phosphothreonine has been researched along with Diabetes-Mellitus--Type-2* in 2 studies
2 other study(ies) available for phosphothreonine and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients.
The serine/threonine kinase Akt/protein kinase B (PKB) is required for the metabolic actions of insulin. Controversial data have been reported regarding Akt defective activation in the muscle of type 2 diabetic patients. Because three Akt isoforms exist, each having a distinct physiological role, we investigated the contribution of isoform-specific defects to insulin signalling in human muscle.. The phosphorylation pattern and kinase activity of each Akt isoform were compared in primary myotubes from healthy control participants and type 2 diabetic patients. Phosphorylation of Ser(473) and of Thr(308) in each isoform was determined after immunoprecipitation in myotubes treated or not with insulin.. Muscle cells from diabetic patients displayed defective insulin action and a drastic reduction of insulin-stimulated activity of all Akt isoforms. This was associated with specific defects of their phosphorylation pattern in response to insulin, with impaired Akt2- (and to a lower extent Akt3-) Ser(473) phosphorylation, and with altered Akt1-Thr(308) phosphorylation. These defects were not due to faulty phosphoinositide-dependent protein kinase 1 (PDK1) production or activation. Rather, we found higher levels of the Akt2-Ser(473)-specific protein phosphatase PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) in muscle from diabetic patients, which may contribute to the alteration of Akt2-Ser(473) phosphorylation.. These results suggest that several mechanisms affecting Akt isoforms, including deregulated production of PHLPP1, could underlie the alterations of skeletal muscle insulin signalling in type 2 diabetes. Taking into account the recently described isoform-specific metabolic functions of Akt, our results provide mechanistic insight that may contribute to the defective regulation of glucose and lipid metabolisms in the muscle of diabetic patients. Topics: Adult; Diabetes Mellitus, Type 2; Enzyme Activation; Female; Humans; Insulin; Isoenzymes; Male; Middle Aged; Muscle, Skeletal; Nuclear Proteins; Phosphoprotein Phosphatases; Phosphorylation; Phosphoserine; Phosphothreonine; Proto-Oncogene Proteins c-akt; Reference Values; RNA, Messenger | 2008 |
Peripheral hyperinsulinemia promotes tau phosphorylation in vivo.
Cerebral insulin receptors play an important role in regulation of energy homeostasis and development of neurodegeneration. Accordingly, type 2 diabetes characterized by insulin resistance is associated with an increased risk of developing Alzheimer's disease. Formation of neurofibrillary tangles, which contain hyperphosphorylated tau, represents a key step in the pathogenesis of neurodegenerative diseases. Here, we directly addressed whether peripheral hyperinsulinemia as one feature of type 2 diabetes can alter in vivo cerebral insulin signaling and tau phosphorylation. Peripheral insulin stimulation rapidly increased insulin receptor tyrosine phosphorylation, mitogen-activated protein kinase and phosphatidylinositol (PI) 3-kinase pathway activation, and dose-dependent tau phosphorylation at Ser202 in the central nervous system. Phospho-FoxO1 and PI-3,4,5-phosphate immunostainings of brains from insulin-stimulated mice showed neuronal staining throughout the brain, not restricted to brain areas without functional blood-brain barrier. Importantly, in insulin-stimulated neuronal/brain-specific insulin receptor knockout mice, cerebral insulin receptor signaling and tau phosphorylation were completely abolished. Thus, peripherally injected insulin directly targets the brain and causes rapid cerebral insulin receptor signal transduction and site-specific tau phosphorylation in vivo, revealing new insights into the linkage of type 2 diabetes and neurodegeneration. Topics: Animals; Brain; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Disease Models, Animal; Hyperinsulinism; Insulin; Mice; Mice, Inbred C57BL; Phosphorylation; Phosphoserine; Phosphothreonine; Receptor, Insulin; Signal Transduction; tau Proteins | 2005 |