phosphorus-radioisotopes has been researched along with Insulin-Resistance* in 3 studies
3 other study(ies) available for phosphorus-radioisotopes and Insulin-Resistance
Article | Year |
---|---|
The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro.
Sulfonylurea drugs are widely used in the therapy of NIDDM. The improvement of glucose tolerance after long-term treatment of NIDDM patients with the drug can be explained by stimulation of glucose utilization in peripheral tissues that are characterized by insulin resistance in these patients. We studied whether the novel sulfonylurea drug, glimepiride, stimulates glucose transport into isolated insulin-resistant rat adipocytes. After long-term incubation of the cells in primary culture with high concentrations of glucose, glutamine, and insulin, stimulation of glucose transport by insulin was significantly reduced both with respect to maximal responsiveness (65% decrease of Vmax) and sensitivity (2.6-fold increase of ED50) compared with adipocytes cultured in medium containing a low concentration of glucose and no insulin. This reflects insulin resistance of glucose transport. In contrast, both responsiveness and sensitivity of glucose transport toward stimulation by glimepiride were only marginally reduced in insulin-resistant adipocytes (15% decrease of Vmax; 1.2-fold increase of ED50) versus control cells. Glimepiride, in combination with glucose and glutamine during the primary culture, caused desensitization of the glucose transport system toward stimulation by insulin, but to a lesser degree than insulin itself (50% reduction of Vmax; ninefold increase of ED50). Again, the maximal responsiveness and sensitivity of glucose transport toward stimulation by glimepiride were only slightly diminished. The presence of glimepiride during primary culture did not antagonize the induction of insulin resistance of glucose transport. The stimulation of glucose transport in insulin-resistant adipocytes by glimepiride is caused by translocation of glucose transporters from low-density microsomes to plasma membranes as demonstrated by subcellular fractionation and immunoblotting with anti-GLUT1 and anti-GLUT4 antibodies. Immunoprecipitation of GLUT4 from 32Pi- and [35S]methionine-labeled adipocytes revealed that the insulin resistance of GLUT4 translocation is accompanied by increased (three- to fourfold) phosphorylation of GLUT4 in both low-density microsomes and plasma membranes. Short-term treatment of desensitized adipocytes with glimepiride or insulin reduced GLUT4 phosphorylation by approximately 70 and 25%, respectively, in both fractions. We conclude that glimepiride activates glucose transport by stimulation of GLUT1 and GLUT4 translocation in rat adipoc Topics: Adipocytes; Animals; Biological Transport; Cell Membrane; Cells, Cultured; Epididymis; Glucose; Glucose Transporter Type 1; Glucose Transporter Type 4; Hypoglycemic Agents; Insulin; Insulin Resistance; Kinetics; Male; Methionine; Monosaccharide Transport Proteins; Muscle Proteins; Phosphates; Phosphorus Radioisotopes; Phosphorylation; Rats; Rats, Wistar; Sulfonylurea Compounds; Sulfur Radioisotopes | 1993 |
Insulin resistance in type 2 (non-insulin-dependent) diabetic patients and their relatives is not associated with a defect in the expression of the insulin-responsive glucose transporter (GLUT-4) gene in human skeletal muscle.
To study whether insulin resistance in Type 2 (non-insulin-dependent) diabetes mellitus is due to a defect in the expression of the insulin-responsive glucose transporter gene (GLUT-4) in human skeletal muscle, we measured the level of GLUT-4 mRNA and (in some of the subjects) its protein in muscle biopsies taken from 14 insulin-resistant patients with Type 2 diabetes, 10 first-degree relatives of the diabetic patients and 12 insulin-sensitive control subjects. Insulin sensitivity was measured with a + 45 mU.m2(-1).min-1 euglycaemic insulin clamp in combination with indirect calorimetry and infusion of [3-3H]glucose. GLUT-4 mRNA was measured using a human GLUT-4 cDNA probe and GLUT-4 protein with a polyclonal antibody specific for the 15 amino acid carboxy-terminal peptide. Both Type 2 diabetic patients and their relatives showed impaired stimulation of total-body glucose disposal by insulin compared with control subjects (29.5 +/- 2.1 and 34.0 +/- 4.8 vs 57.9 +/- 3.1 mumol.kg lean body mass-1.min-1; p less than 0.01). This impairment in glucose disposal was primarily accounted for by a reduction in insulin-stimulated storage of glucose as glycogen (13.0 +/- 2.4 and 15.6 +/- 3.9 vs 36.9 +/- 2.2 mumol.kg lean body mass-1.min-1; p less than 0.01). The levels of GLUT-4 mRNA expressed both per microgram of total RNA and per microgram DNA, were higher in the diabetic patients compared with the control subjects (116 +/- 25 vs 53 +/- 10 pg/microgram RNA and 177 +/- 35 vs 112 +/- 29 pg/microgram DNA; p less than 0.05, p less than 0.01, respectively).(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Adult; Autoradiography; Blood Glucose; Blotting, Western; Diabetes Mellitus, Type 2; Glycated Hemoglobin; Humans; Insulin; Insulin Resistance; Middle Aged; Monosaccharide Transport Proteins; Muscle Proteins; Muscles; Phosphorus Radioisotopes; Reference Values; RNA, Messenger | 1992 |
Multiple defects occur in the guanine nucleotide regulatory protein system in liver plasma membranes of obese (fa/fa) but not lean (Fa/Fa) Zucker rats: loss of functional Gi and abnormal Gs function.
Hepatocyte membranes from both lean and obese Zucker rats exhibited adenylate cyclase activity that could be stimulated by glucagon, forskolin, NaF and elevated concentrations of p[NH]ppG. In membranes from lean animals, functional Gi was detected by the ability of low concentrations of p[NH]ppG to inhibit forskolin-activated adenylate cyclase. This activity was abolished by treatment of hepatocytes with either pertussis toxin or the phorbol ester TPA, prior to making membranes for assay of adenylate cyclase activity. In hepatocyte membranes from obese animals no functional Gi activity was detected. Quantitative immunoblotting, using an antibody able to detect the alpha subunit of Gi, showed that hepatocyte plasma membranes from both lean and obese Zucker rats had similar amounts of Gi-alpha subunit. This was 6.2 pmol/mg plasma membrane for lean and 6.5 pmol/mg plasma membrane for obese animals. Using thiol pre-activated pertussis toxin and [32P]-NAD+, similar degrees of labelling of the 40 kDa alpha subunit of Gi were found using plasma membranes of both lean and obese Zucker rats. We suggest that liver plasma membranes from obese Zucker rats express an inactive Gi alpha subunit. Thus lesions in liver Gi functioning are seen in insulin-resistant obese rats and in alloxan- and streptozotocin-induced diabetic rats which also show resistance as regards the acute actions of insulin. Liver plasma membranes of obese animals also showed an impairment in the coupling of glucagon receptors to Gs-controlled adenylate cyclase, with the Kd values for activation by glucagon being 17.3 and 126 nM for lean and obese animals respectively. Membranes from obese animals also showed a reduced ability for high concentration of p[NH]ppG to activate adenylate cyclase. The use of [32P]-NAD+ and thiol-preactivated cholera toxin to label the 43 kDa and 52 kDa forms of the alpha-subunit of Gs showed that a reduced labelling occurred using liver plasma membranes from obese animals. It is suggested that abnormalities in the levels of expression of primarily the 52 kDa form of alpha-Gs may give rise to the abnormal coupling between glucagon receptors and adenylate cyclase in liver membranes from obese (fa/fa) Zucker rats. Topics: Adenosine Diphosphate Ribose; Adenylate Cyclase Toxin; Adenylyl Cyclases; Animals; Blotting, Western; Cell Membrane; Cholera Toxin; Colforsin; Diabetes Mellitus, Experimental; Glucagon; GTP-Binding Proteins; Guanylyl Imidodiphosphate; Insulin Resistance; Liver; Male; NAD; Obesity; Pertussis Toxin; Phosphorus Radioisotopes; Rats; Rats, Inbred Strains; Rats, Zucker; Receptors, Gastrointestinal Hormone; Receptors, Glucagon; Virulence Factors, Bordetella | 1989 |