phosphoramidon and Endotoxemia

phosphoramidon has been researched along with Endotoxemia* in 3 studies

Reviews

1 review(s) available for phosphoramidon and Endotoxemia

ArticleYear
[Endothelin].
    Nihon rinsho. Japanese journal of clinical medicine, 2004, Volume: 62 Suppl 6

    Topics: Acute Kidney Injury; Animals; Biomarkers; Contrast Media; Endothelin Receptor Antagonists; Endothelin-1; Endotoxemia; Erythropoietin; Fibrosis; Glycopeptides; Heart Failure; Humans; Hypotension; Kidney Failure, Chronic; Peptides, Cyclic; Peritoneal Dialysis; Peritoneum; Prognosis; Recombinant Proteins; Renal Dialysis

2004

Trials

1 trial(s) available for phosphoramidon and Endotoxemia

ArticleYear
Despite minimal hemodynamic alterations endotoxemia modulates NOS and p38-MAPK phosphorylation via metalloendopeptidases.
    Molecular and cellular biochemistry, 2004, Volume: 265, Issue:1-2

    In the present study, we hypothesized that endotoxemia produces metalloendopeptidase (MEPD)-dependent generation of endothelin-1 (ET-1) and alters NOS expression correlating with p38-mitogen-activated protein kinase (MAPK) phosphorylation in thoracic aorta. Male Sprague-Dawley rats (350-400 g) were subjected to two groups randomly; sham-treated (N = 10) and lipopolysaccharide (LPS)-treated (N = 10) (E. coli LPS 2 mg/kg bolus + 2 mg/kg infusion for 30 min). The animals in each group were further subdivided into vehicle and MEPD inhibitor phosphoramidon (1 mg/kg bolus, PHOS)-treated groups. LPS produces a significant decrease in mean arterial pressure (MAP) at 2 h post endotoxemia that was blocked by PHOS. PHOS attenuated LPS-induced increase in tumor necrosis factor-alpha (TNF-alpha) concentration at 2- and 24 h post-LPS administration. LPS significantly elevated plasma concentrations of ET-1 at 2- and 24 h post endotoxemia. An upregulated preproET-1 expression following both LPS and MEPD inhibition was observed in thoracic aorta at 2 h post treatment. PHOS effectively blocked conversion of preproET-1 to ET-1 in thoracic aorta locally at 24 h post treatment in endotoxic rats. PHOS inhibited LPS-induced upregulation of inducible NOS (iNOS), downregulation of endothelial NOS (eNOS) and elevation of NO byproducts (NOx) in thoracic aorta. PHOS also blocked LPS-induced upregulated p38-MAPK phosphorylation in thoracic aorta at 24 h post endotoxemia. The data revealed that LPS induces MEPD-sensitive inflammatory response syndrome (SIRS) at 2- and 24 h post endotoxemia. We concluded that inhibition of MEPD not only decreases the levels of ET-1 but also simultaneously downregulates protein expression of iNOS and phosphorylated p38-MAPK while increasing eNOS in thoracic aorta during SIRS in endotoxemia. We suggest that MEPD-dependent ET-1 and NO mechanisms may be involved in endotoxemia-induced altered p38-MAPK phosphorylation.

    Topics: Animals; Aorta, Thoracic; Blood Pressure; Cytokines; Endothelin-1; Endotoxemia; Glycopeptides; Immunoblotting; Lipopolysaccharides; Male; Metalloendopeptidases; Models, Biological; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; Rats, Sprague-Dawley; Time Factors; Up-Regulation

2004

Other Studies

1 other study(ies) available for phosphoramidon and Endotoxemia

ArticleYear
Metalloendopeptidase inhibition regulates phosphorylation of p38-mitogen-activated protein kinase and nitric oxide synthase in heart after endotoxemia.
    Shock (Augusta, Ga.), 2003, Volume: 20, Issue:4

    We tested the hypothesis that metalloendopeptidase inhibition using phosphoramidon during induction of endotoxemia 24 h later would down-regulate the protein expression of myocardial inducible nitric oxide synthase (iNOS) and phosphorylation of p38-mitogen-activated protein kinase (p38-MAPK). Male Sprague-Dawley rats (350-400 g) were randomly divided into sham-treated and LPS-treated groups (Escherichia. coli lipopolysaccharide [LPS] 2 mg/kg bolus + 2 mg/kg infusion for 30 min). The animals in each group were further subdivided into vehicle- and phosphoramidon (1 mg/kg bolus)-treated subgroups. Blood and heart samples were collected at 2- and 24-h postendotoxemia/phosphoramidon treatment. LPS at 2 h after its administration produced a significant decrease in mean arterial pressure that was blocked by phosphoramidon treatment. LPS at 2 and 24 h produced a significant elevation in the concentration of left ventricular endothelin-1 (ET-1) both in heart and plasma as compared with control group. This LPS-induced left ventricular ET-1 elevation at 24 h was significantly reduced by phosphoramidon. No significant alterations were observed in the myocardial protein expression of preproET-1, iNOS, and eNOS at 2 h post LPS. In 24-h post treatment groups phosphoramidon upregulated the expression of myocardial preproET-1 protein both in control and endotoxemic rat groups. Also, LPS-induced upregulated protein expression of myocardial-inducible nitric oxide synthase and increased levels of nitric oxide byproducts at 24 h were blocked by phosphoramidon. Phosphoramidon inhibited LPS-induced down-regulated expression of myocardial endothelial nitric oxide synthase and upregulated p38-MAPK phosphorylation. These results indicated that inhibition of metalloendopeptidase during induction of endotoxemia could regulate the phosphorylation of myocardial p38-MAPK and iNOS protein expression at 24-h post endotoxemia. We concluded that inhibition of metalloendopeptidases during early endotoxemia not only decreased the biosynthesis of ET-1 in heart locally but also simultaneously down-regulated myocardial protein expression of iNOS and p38-MAPK phosphorylation in the later stage of endotoxemia.

    Topics: Animals; Blood Pressure; Endothelin-1; Endotoxemia; Glycopeptides; Heart; Lipopolysaccharides; Male; Metalloendopeptidases; Mitogen-Activated Protein Kinases; Models, Biological; Myocardium; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Protease Inhibitors; Rats; Rats, Sprague-Dawley

2003