phosphoramidon has been researched along with Breast-Neoplasms* in 3 studies
3 other study(ies) available for phosphoramidon and Breast-Neoplasms
Article | Year |
---|---|
Breast cancer cell-associated endopeptidase EC 24.11 modulates proliferative response to bombesin.
We have investigated the production, growth and inactivation of gastrin-releasing peptide (GRP)-like peptides in human breast cancer cell lines. Radioimmunoassay detected GRP-like immunoreactivity (GRP-LI) in T47D breast cancer cells but not in the conditioned medium, indicating rapid clearance. No GRP-LI was found in the ZR-75-1 or MDA-MB-436 cells or their conditioned medium. High-performance liquid chromatography (HPLC) analysis of the GRP-LI in the T47D cells revealed a major peak, which co-eluted with GRP(18-27), and a minor more hydrophilic peak. In vitro stimulation of T47D cell growth by bombesin (BN) was enhanced to 138% of control levels (bombesin alone) by the addition of the selective endopeptidase EC 3.4.24.11 inhibitor phosphoramidon (0.1 ng ml(-1)). Fluorogenic analysis using whole cells confirmed low levels of this phosphoramidon-sensitive enzyme on the T47D cells. This enzyme, previously unreported in human breast cancer cells, significantly modulates both T47D growth and its response to BN-induced growth. Topics: Bombesin; Breast Neoplasms; Cell Division; Culture Media; Female; Gastrin-Releasing Peptide; Glycopeptides; Humans; Neoplasm Proteins; Neprilysin; Protease Inhibitors; Tumor Cells, Cultured | 1999 |
Human breast cancer cells contain a phosphoramidon-sensitive metalloproteinase which can process exogenous big endothelin-1 to endothelin-1: a proposed mitogen for human breast fibroblasts.
Endothelin-1 (ET-1) levels are elevated in human breast tumours compared with normal and benign tissues, and in the presence of insulin-like growth factor 1 (IGF-I) ET-1 is a potent mitogen for human breast fibroblasts. In this study we have examined the ability of intact human breast cancer cell lines to process exogenously added big ET-1 (1-38) to the active mature ET-1 peptide by using a specific radioimmunometric assay. In both hormome-dependent (MCF-7, T47-D) and hormone-independent (MDA-MB-231) breast cancer cell lines the putative endothelin-converting enzyme (ECE) exhibited apparent Michaelis-Menten kinetics when converting added big ET-1 to ET-1. Both basal ET-1 production and exogenously added big ET-1 to ET-1 conversion were greatly reduced in all three cell lines in response to the metalloproteinase inhibitor phosphoramidon but were insensitive to other classes of protease inhibitors. Inhibition was also observed when cells were incubated in the presence of the divalent cation chelators 1,10-phenanthroline and EDTA. In MCF-7 cells the optimal pH for the ECE activity using a saponin cell permeabilisation procedure was found to residue within a narrow range of 6.2-7.26. Our results indicate that human breast cancer cells contain a neutral phosphoramidon-sensitive metalloproteinase which can process big ET-1 to ET-1. In the breast this conversion could contribute substantially to the local extracellular levels of this proposed paracrine breast fibroblast mitogen. Topics: Aspartic Acid Endopeptidases; Breast; Breast Neoplasms; Chromatography, High Pressure Liquid; Culture Media; Edetic Acid; Endothelin-1; Endothelin-Converting Enzymes; Endothelins; Fibroblasts; Glycopeptides; Growth Substances; Humans; Hydrogen-Ion Concentration; Iron Chelating Agents; Kinetics; Metalloendopeptidases; Mitogens; Phenanthrolines; Protease Inhibitors; Protein Precursors; Sensitivity and Specificity; Tumor Cells, Cultured | 1995 |
Retraction of cultured endothelial cell monolayer by human breast cancer cells, MCF-7.
A human breast cancer cell line (MCF-7), when sealed on confluent bovine pulmonary aortic endothelial cell (CPAE) monolayers, induced morphological changes (retraction) in CPAE cells. The area of retraction depended on the incubation time and the number of MCF-7 cells, suggesting that MCF-7 cells had the capacity to retract CPAE cells. This capacity was reduced by 60% by pretreatment of MCF-7 cells with 17 beta-estradiol (E) and progesterone (Pg). The extent of retraction was not affected by the addition of various protease inhibitors. CPAE retraction was induced also by adding conditioned medium (CM) from the culture of MCF-7 cells. Considerably less activity was detected in the CM obtained from MCF-7 cells cultured in the presence of E and Pg. The retraction was reversed in 24 h by culturing the monolayer in fresh medium without CM and was not induced by trypsin treatment of the CM. Topics: Breast Neoplasms; Cell Adhesion; Cell Communication; Cell Line; Culture Media, Conditioned; Endothelium, Vascular; Estradiol; Glycopeptides; Glycoproteins; Humans; Leucine; Medroxyprogesterone Acetate; Metalloendopeptidases; Microscopy, Phase-Contrast; Progesterone; Protease Inhibitors; Receptors, Progesterone; Tamoxifen; Tissue Inhibitor of Metalloproteinases; Trypsin; Tumor Cells, Cultured | 1993 |