phosphocreatinine and Reperfusion-Injury

phosphocreatinine has been researched along with Reperfusion-Injury* in 2 studies

Other Studies

2 other study(ies) available for phosphocreatinine and Reperfusion-Injury

ArticleYear
Effects of alpha-phenyl-N-tert-butyl nitrone (PBN)on brain cell membrane function and energy metabolism during transient global cerebral hypoxia-ischemia and reoxygenation-reperfusion in newborn piglets.
    Journal of Korean medical science, 2004, Volume: 19, Issue:3

    We sought to know whether a free radical spin trap agent, alpha-phenyl-N-tert-butyl nitrone (PBN) influences brain cell membrane function and energy metabolism during and after transient global hypoxia-ischemia (HI) in the newborn piglets. Cerebral HI was induced by temporary complete occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min, followed by release of carotid occlusion and normoxic ventilation for 1 hr (reoxygenation-reperfusion,RR). PBN (100 mg/kg) or vehicle was administered intravenously just before the induction of HI or RR. Brain cortex was harvested for the biochemical analyses at the end of HI or RR. The level of conjugated dienes significantly increased and the activity of Na+, K+ -ATPase significantly decreased during HI,and they did not recover during RR. The levels of ATP and phosphocreatine (PCr)significantly decreased during HI, and recovered during RR. PBN significantly decreased the level of conjugated dienes both during HI and RR, but did not influence the activity of Na+, K+ -ATPase and the levels of ATP and PCr. We demonstrated that PBN effectively reduced brain cell membrane lipid peroxidation, but did not reverse ongoing brain cell membrane dysfunction nor did restore brain cellular energy depletion, in our piglet model of global hypoxic-ischemic brain injury.

    Topics: Adenosine Triphosphate; Animals; Animals, Newborn; Brain; Cell Membrane; Cerebral Cortex; Cyclic N-Oxides; Hypoxia; Ischemia; Lipid Peroxidation; Neuroprotective Agents; Nitrogen Oxides; Phosphocreatine; Reperfusion Injury; Sodium-Potassium-Exchanging ATPase; Swine; Time Factors

2004
Induced hypertension treatment to improve cerebral ischemic injury after transient forebrain ischemia.
    Brain research, 1999, Jul-24, Volume: 835, Issue:2

    The effect of induced hypertension treatment on cerebral ischemia is still controversial. We investigated the preferred blood pressure manipulation level and pressor agent required to reduce cerebral ischemic injury following transient forebrain ischemia induced by bilateral occlusion of the common carotid arteries in anesthetized gerbils. Following 60-min cerebral ischemia, we evaluated the preferred blood pressure manipulation level and pressor agent required to treat cerebral ischemic injury after reperfusion by examining the effects of different levels of mean arterial blood pressure (MABP), increased with phenylephrine or angiotensin II or decreased by blood withdrawal, on cerebral blood flow (CBF), survival ratio, cerebral edema, and brain energy metabolism following transient forebrain ischemia in gerbils. Mild phenylephrine-induced hypertension treatment (21+/-4 mmHg) during post-cerebral ischemia-reperfusion improved the survival ratio and reduced cerebral edema, which was also associated with an increase in local CBF and a recovery of brain energy metabolism. However, intense phenylephrine-induced hypertension, angiotensin II-induced hypertension, or hypotension worsen the survival rate and produced extra cerebral edema, that were also associated with deterioration of brain energy metabolism. These results demonstrate that a mild induced hypertension with phenylephrine (21+/-4 mmHg above the baseline level) results in reduction of the cerebral edema and improves the survival ratio and brain energy metabolism. Furthermore, angiotensin II may have neurotoxic effect to use as the pressor agent for induced hypertension after cerebral ischemia.

    Topics: Adenosine Triphosphate; Analysis of Variance; Angiotensin II; Animals; Blood Pressure; Brain Edema; Cerebrovascular Circulation; Energy Metabolism; Gerbillinae; Hypertension; Ischemic Attack, Transient; Male; Phenylephrine; Phosphocreatine; Prosencephalon; Reperfusion Injury; Survival Rate

1999