phosphocreatinine has been researched along with Hypoxia* in 3 studies
3 other study(ies) available for phosphocreatinine and Hypoxia
Article | Year |
---|---|
Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide.
The present study tests the hypothesis that cerebral hypoxia results in increased ratio of Bax/Bcl-2, activation of caspase-9, lipid peroxidation, and DNA fragmentation in mitochondria of the cerebral cortex of newborn piglets and that the inhibition of nitric oxide synthase by N-nitro-L-arginine during hypoxia will prevent the events leading to mitochondrial DNA fragmentation. To test this hypothesis, six piglets, 3-5 days old, were divided into three groups: normoxic (n=5), hypoxic (n=5), and hypoxic-nitric oxide synthase (n=4). Hypoxic animals were exposed to a FiO2 of 0.6 for 60 min. Nitric oxide synthase (40 mg/kg) was infused over 60 min prior to hypoxia. Tissue hypoxia was confirmed by measuring levels of ATP and phosphocreatine. Cerebral cortical tissue mitochondria were isolated and purified using a discontinuous ficoll gradient. Mitochondrial Bax and Bcl-2 proteins were determined by Western blot. Caspase-9 activity in mitochondria was determined spectro-fluorometrically using fluorogenic substrate for caspase-9. Fluorescent compounds, an index of mitochondrial membrane lipid peroxidation, were determined spectrofluorometrically. Mitochondrial DNA was isolated and separated by electrophoresis on 1% agarose gel and stained with ethidium bromide. ATP levels (micromol/g brain) were 4.52+/-0.34 in normoxic, 1.18+/-0.29 in hypoxic (P<0.05) and 1.00+/-0.26 in hypoxic-nitric oxide synthase animals (P<0.05 vs. normoxic). Phosphocreatine levels (micromol/g brain) were 3.61+/-0.33 in normoxic, 0.70+/-0.20 in hypoxic (P<0.05 vs. normoxic) and 0.57+/-0.14 in hypoxic-nitric oxide synthase animals (P<0.05 vs. normoxic, P=NS vs. hypoxic). Bax density in mitochondrial membranes was 160+/-28 in normoxic and 324+/-65 in hypoxic (P<0.001 vs. normoxic). Bcl-2 density mitochondria was 96+/-18 in normoxic and 98+/-20 in hypoxic (P=NS vs. normoxic). Mitochondrial caspase-9 activity (nmol/mg protein/h) was 1.32+/-0.23 in normoxic and 2.25+/-0.24 in hypoxic (P<0.01 vs. normoxic). Levels of fluorescent compounds (microg of quinine sulfate/g protein) were 12.48+/-4.13 in normoxic and 37.92+/-7.62 in hypoxic (P=0.003 vs. normoxic). Densities (ODxmm2) of low molecular weight DNA fragments were 143+/-38 in normoxic, 365+/-152 in hypoxic, (P<0.05 vs. normoxic) and 163+/-25 in hypoxic-nitric oxide synthase animals (P<0.05 vs. hypoxic, P=NS vs. normoxic). The data demonstrate that hypoxia results in increased mitochondrial proapoptotic protein Bax, increased mitochondrial caspa Topics: Adenosine Triphosphate; Animals; Animals, Newborn; bcl-2-Associated X Protein; Blotting, Western; Caspase 9; Caspases; Cerebral Cortex; DNA Fragmentation; Enzyme Activation; Gene Expression; Hypoxia; Lipid Peroxidation; Mitochondria; Nitric Oxide; Phosphocreatine; Proto-Oncogene Proteins c-bcl-2; Swine | 2006 |
Effects of alpha-phenyl-N-tert-butyl nitrone (PBN)on brain cell membrane function and energy metabolism during transient global cerebral hypoxia-ischemia and reoxygenation-reperfusion in newborn piglets.
We sought to know whether a free radical spin trap agent, alpha-phenyl-N-tert-butyl nitrone (PBN) influences brain cell membrane function and energy metabolism during and after transient global hypoxia-ischemia (HI) in the newborn piglets. Cerebral HI was induced by temporary complete occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min, followed by release of carotid occlusion and normoxic ventilation for 1 hr (reoxygenation-reperfusion,RR). PBN (100 mg/kg) or vehicle was administered intravenously just before the induction of HI or RR. Brain cortex was harvested for the biochemical analyses at the end of HI or RR. The level of conjugated dienes significantly increased and the activity of Na+, K+ -ATPase significantly decreased during HI,and they did not recover during RR. The levels of ATP and phosphocreatine (PCr)significantly decreased during HI, and recovered during RR. PBN significantly decreased the level of conjugated dienes both during HI and RR, but did not influence the activity of Na+, K+ -ATPase and the levels of ATP and PCr. We demonstrated that PBN effectively reduced brain cell membrane lipid peroxidation, but did not reverse ongoing brain cell membrane dysfunction nor did restore brain cellular energy depletion, in our piglet model of global hypoxic-ischemic brain injury. Topics: Adenosine Triphosphate; Animals; Animals, Newborn; Brain; Cell Membrane; Cerebral Cortex; Cyclic N-Oxides; Hypoxia; Ischemia; Lipid Peroxidation; Neuroprotective Agents; Nitrogen Oxides; Phosphocreatine; Reperfusion Injury; Sodium-Potassium-Exchanging ATPase; Swine; Time Factors | 2004 |
Tumor size dependent changes in a murine fibrosarcoma: use of in vivo 31P NMR for non-invasive evaluation of tumor metabolic status.
Tumor tissue contains viable hypoxic regions that are radioresistant and often chemoresistant and may therefore be responsible for some treatment failures. A subject of general interest has been the development of non-invasive means of monitoring tissue oxygen. Pulse Fourier transform 31P NMR spectroscopy can be used to estimate intracellular nucleotide triphosphates (NTP), phosphocreatinine (PCr), inorganic phosphate (Pi) and pH. We have obtained 31P NMR spectra as an indirect estimate of tissue oxygen and metabolic status in a C3H mouse fibrosarcoma FSaII. Sequential spectra were studied during tumor growth in a cohort of animals and peak area ratios for several metabolites were computed digitally by computer. During growth, tumors showed a progressive loss of PCr with increasing Pi, and most tumors greater than 250 mm3 in volume had little or no measurable PCr. The smallest tumors (38 mm3 average volume) had PCr/Pi ratios of 1.03 +/- .24, whereas tumors 250 mm3 or more had an average PCr/Pi ratio of 0.15 +/- .04. Similarly derived NTP/Pi ratios decreased with tumor size, but this change was not significant (p = .17). Radiobiologic hypoxic cell fractions were estimated using the radiation dose required to control tumor in 50% of animals (TCD50) or by the lung colony technique. Tumors less than 100 mm3 had a hypoxic cell fraction of 4% (TCD50) while tumors 250 mm3 had a 40% hypoxic cell fraction (lung colony assay). These hypoxic fraction determinations correlated well with the depletion of PCr and decline in NTP/Pi ratios seen at 250 mm3 tumor volumes. Tumor spectral changes with acute ischemia were studied after ligation of the tumor bearing limb and were similar to changes seen with tumor growth. PCr was lost within 7 minutes, with concurrent increase in Pi and loss of NTP. Complete loss of all high energy phosphates occurred by 40 minutes of occlusion. In vivo tumor 31P NMR spectroscopy can be used to estimate tissue metabolic status and may be useful in non-invasive prediction of hypoxic cell fraction, reoxygenation, and radiation treatment response. Topics: Animals; Energy Metabolism; Female; Fibrosarcoma; Hydrogen-Ion Concentration; Hypoxia; Ischemia; Magnetic Resonance Spectroscopy; Male; Mice; Mice, Inbred C3H; Nucleotides; Phosphates; Phosphocreatine; Sarcoma, Experimental | 1986 |