phosphocreatine has been researched along with Fatigue-Syndrome--Chronic* in 5 studies
5 other study(ies) available for phosphocreatine and Fatigue-Syndrome--Chronic
Article | Year |
---|---|
Impaired cardiovascular response to standing in chronic fatigue syndrome.
Impaired skeletal muscle metabolism is recognized in chronic fatigue syndrome (CFS). This study examined the relationship between skeletal and cardiac muscle function and symptoms on standing in CFS using magnetic resonance spectroscopy (MRS) and impedance cardiography.. Phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio by cardiac MRS, PCr/ADP and proton efflux by muscle MRS were performed in 12 CFS (Fukuda) and 8 controls. Head up tilt (HUT) and cardiac contractility (left ventricular work index, LVWI) (n = 64 CFS and matched controls) were found. Fatigue impact was accessed by Fatigue Impact Scale and orthostatic symptoms by Orthostatic Grading Scale (OGS).. Cardiac PCr/ATP correlated with measures of muscle bioenergetic function (half-time PCr recovery [kappa = -0.71, P = 0.005] and half-time ADP recovery [kappa = -0.60, P = 0.02]) suggesting that the muscle and cardiac bioenergetic function correlate in CFS. Four of 12 (33.3%) CFS patients had PCr/ATP values consistent with significant cardiac impairment. Those with impaired cardiac energy metabolism had significantly reduced maximal and initial proton efflux rates (P < 0.05). Cardiac PCr/ATP ratio correlated with myocardial contractility (LVWI) in response to standing (P = 0.03). On HUT, LVWI on standing was significantly higher in CFS (P = 0.05) with symptoms on standing (OGS) occurring in 61/64 (95%) (vs. 25/64 [39%] controls; P < 0.0001). OGS scores were significantly higher in those with abnormal LVWI responses to standing (P = 0.04), with the LVWI on standing correlating with OGS scores (r(2) = 0.1; P = 0.03). HUT was positive in 19 (32%).. Skeletal muscle and cardiac bioenergetic abnormalities associate in CFS. Cardiac bioenergetic metabolism associates with increase in cardiac contractility on standing. Haemodynamic assessment in CFS is well tolerated and safe with a high diagnostic yield comparable with unexplained syncope. Topics: Adenosine Triphosphate; Adult; Aged; Aged, 80 and over; Case-Control Studies; Energy Metabolism; Fatigue; Fatigue Syndrome, Chronic; Female; Heart Function Tests; Hemodynamics; Humans; Magnetic Resonance Spectroscopy; Male; Middle Aged; Myocardium; Phosphocreatine; Posture; Young Adult | 2010 |
Muscle fatigue increases the probability of developing hyperalgesia in mice.
Chronic muscle pain is a major clinical problem that is often associated with fatigue. Conversely, chronic fatigue conditions are commonly associated with muscle pain. We tested the hypothesis that muscle fatigue enhances hyperalgesia associated with injection of acidic saline into muscle. We evaluated mechanical sensitivity of the paw (von Frey) in mice after 2 intramuscular injections of saline (20 microL; pH 4, pH 5, pH 6, pH 7.2) in a fatigue and a control group. To induce fatigue, mice were run for 2 h/day for 2 days prior to the first injection and 2 h/day for 2 days prior to the second injection. Muscle lactate, pCO(2), pO(2), creatinine kinase, phosphate, and histology were examined after the fatigue task and compared to a control group. Grip force was significantly decreased after 2 h of running indicating fatigue. The fatigue task did not induce muscle damage as there was no difference in muscle lactate, pCO(2), pO(2), creatinine kinase, phosphate, or histology. The fatigue task altered the dose-response relationship to intramuscular acidic saline injections. Mechanical hyperalgesia was observed in both fatigue and control groups after intramuscular injection of pH 4.0, but only the fatigue group after injection of pH 5. Neither the fatigue nor the control group developed hyperalgesia in response to intramuscular injection of pH 6 or pH 7.2. In conclusion, fatigue modified the susceptibility of mice to acid injection of pH 5.0 to result in mechanical hyperalgesia after 2 injections of pH 5.0. The fatigue task did not produce measurable changes in the muscle tissue suggesting a central mechanism mediating the enhancement of hyperalgesia.. These data therefore show that muscle fatigue can enhance the likelihood that one develops pain to a mild insult. Clinically, this could relate to the development of pain from such conditions as repetitive strain injury, and may relate to the interrelationship between chronic pain and fatigue. Topics: Animals; Carbon Dioxide; Cumulative Trauma Disorders; Disease Models, Animal; Dose-Response Relationship, Drug; Fatigue Syndrome, Chronic; Hyperalgesia; Hypoxia; Ischemia; Lactic Acid; Male; Mice; Mice, Inbred C57BL; Muscle Fatigue; Muscle Strength; Muscle, Skeletal; Oxygen; Pain Measurement; Phosphocreatine; Physical Stimulation; Sodium Chloride | 2007 |
Heterogeneity in chronic fatigue syndrome: evidence from magnetic resonance spectroscopy of muscle.
It has been shown previously that some patients with chronic fatigue syndrome show an abnormal increase in plasma lactate following a short period of moderate exercise, in the sub-anaerobic threshold exercise test (SATET). This cannot be explained satisfactorily by the effects of 'inactivity' or 'deconditioning', and patients with abnormal lactate responses to exercise (SATET +ve) have been found to have significantly fewer Type 1 muscle fibres in quadriceps biopsies than SATET -ve patients. We performed phosphorus magnetic resonance spectroscopy on forearm muscles of 10 SATET +ve patients, 9 SATET -ve patients and 13 sedentary volunteers. There were no differences in resting spectra between these groups but at the end of exercise, intracellular pH in the SATET +ve patients was significantly lower than in both the SATET -ve cases and controls (P < 0.03), and the SATET +ve patients also showed a significantly lower ATP synthesis rate during recovery (P < 0.01), indicating impaired mitochondrial oxidative phosphorylation. These observations support other evidence which indicates that chronic fatigue syndrome is a heterogeneous disorder, and confirms the view that some chronic fatigue syndrome patients have a peripheral component to their fatigue. Topics: Adenosine Diphosphate; Adenosine Triphosphate; Adult; Biopsy; Fatigue Syndrome, Chronic; Female; Forearm; Genetic Variation; Humans; Lactic Acid; Magnetic Resonance Spectroscopy; Male; Middle Aged; Muscle, Skeletal; Phosphocreatine; Reference Values | 1998 |
Reduced oxidative muscle metabolism in chronic fatigue syndrome.
The purpose of this study was to determine if chronic fatigue syndrome (CSF) is characterized by abnormalities in oxidative muscle metabolism. Patients with CFS according to Centers for Disease Control (CDC) criteria (n = 22) were compared to normal sedentary subjects (n = 15). CFS patients were also tested before and 2 days after a maximal treadmill test. Muscle oxidative capacity was measured as the maximal rate of postexercise phosphocreatine (PCr) resynthesis using the ADP model (Vmax) in the calf muscles using 31P magnetic resonance spectroscopy. Vmax was significantly reduced in CFS patients (39.6 +/- 2.8 mmol/L/min, mean +/- SE) compared to controls (53.8 +/- 2.8 mmol/L/min). Two days postexercise there was no change in resting inorganic phosphate (Pi)/PCr or Vmax in the CFS patients (n = 14). In conclusion, oxidative metabolism is reduced in CFS patients compared to sedentary controls. In addition, a single bout of strenuous exercise did not cause a further reduction in oxidative metabolism, or alter resting Pi/PCr ratios. Topics: Adult; Fatigue Syndrome, Chronic; Female; Humans; Kinetics; Magnetic Resonance Spectroscopy; Male; Muscles; Oxidation-Reduction; Phosphates; Phosphocreatine; Physical Exertion | 1996 |
Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy.
Previous study of patients with chronic fatigue syndrome (CFS) has demonstrated a markedly reduced dynamic exercise capacity, not limited by cardiac performance and in the absence of clinical neuromuscular dysfunction, suggesting the possibility of a subclinical defect of skeletal muscle.. The in vivo metabolism of the gastrocnemius muscles of 22 CFS patients and 21 normal control subjects was compared during rest, graded dynamic exercise to exhaustion and recovery, using 31P nuclear magnetic resonance (NMR) spectroscopy to reflect minute-to-minute intracellular high-energy phosphate metabolism.. Duration of exercise was markedly shorter in the CFS patients (8.1 +/- 2.8 min) compared with the normal subjects (11.3 +/- 4.3 min) (p = 0.005). There were large changes in phosphocreatine (PCr), inorganic phosphate (Pi), and pH from rest to clinical fatigue in all subjects, reflecting the high intensity of the exercise. The temporal metabolic patterns were qualitatively similar in the CFS patients and normal subjects. There were early and continuous changes in PCr and Pi that peaked at the point of fatigue and rapidly reversed after exercise. In contrast, pH was relatively static in early exercise, not declining noticeably until 50 percent of total exercise duration was achieved, and reaching a nadir at 2 min postexercise, before rapidly reversing. There were no differences in pH at rest (7.08 +/- 0.04 vs 7.10 +/- 0.04), exhaustion (6.85 +/- 0.17 vs 6.76 +/- 0.17) or early (6.64 +/- 0.25 vs 6.56 +/- 0.24) or late recovery (7.09 +/- 0.04 vs 7.10 +/- 0.05), CFS patients vs normal subjects, respectively (NS). Neither were there intergroup differences (NS) in PCr or Pi. Although, quantitatively, the changes in PCr, Pi, and pH were marked and similar in both groups from rest to exhaustion, the changes all occurred much more rapidly in the CFS patients. Moreover, adenosine triphosphate (ATP) was significantly (p = 0.007) less at exhaustion in the CFS group.. Patients with CFS and normal control subjects have similar skeletal muscle metabolic patterns during dynamic exercise and reach similar clinical and metabolic end points. However, CFS patients reach exhaustion much more rapidly than normal subjects, at which point they also have relatively reduced intracellular concentrations of ATP. These data suggest a defect of oxidative metabolism with a resultant acceleration of glycolysis in the working skeletal muscles of CFS patients. This metabolic defect may contribute to the reduced physical endurance of CFS patients. Its etiology is unknown. Whether CFS patients' overwhelming tiredness at rest has a similar metabolic pathophysiology or etiology also remains unknown. Topics: Adenosine Triphosphate; Adolescent; Adult; Energy Metabolism; Fatigue Syndrome, Chronic; Female; Humans; Hydrogen-Ion Concentration; Magnetic Resonance Spectroscopy; Male; Middle Aged; Muscles; Phosphates; Phosphocreatine; Phosphorus; Physical Endurance; Physical Exertion; Rest; Time Factors | 1992 |