phosphocreatine and Bacteremia

phosphocreatine has been researched along with Bacteremia* in 2 studies

Other Studies

2 other study(ies) available for phosphocreatine and Bacteremia

ArticleYear
A technique for the measurement of renal ATP in a large animal model of septic shock.
    The International journal of artificial organs, 2005, Volume: 28, Issue:1

    The mechanisms responsible for acute renal failure in sepsis are not understood. Measurement of tissue ATP might help to understand this process but, in the large animal, it is hampered by major technical difficulties.. To develop a technique to monitor ATP in the kidney of a large mammal during the induction of septic shock and then circulatory arrest.. Implantation of a custom-made phosphorus coil around the left kidney. Induction of septic shock by intravenous E. coli administration. Acquisition of 31 P magnetic resonance (MR) spectroscopic data at 3-tesla before and during septic shock over several hours. Induction of euthanasia and measurement of the same 31 P signal immediately and thirty minutes after circulatory arrest.. Clear reproducible 31 P MR spectra were obtained before and after the induction of septic shock and euthanasia. They indicated limited changes in ATP during septic shock. An expected rapid and dramatic decrease in ATP occurred with euthanasia.. It is possible to sequentially monitor renal bioenergetics in a large mammal during septic shock using an implanted custom-made phosphorus coil and 3-tesla MR technology. This technique offers a novel approach to the investigation of septic renal failure.

    Topics: Acute Kidney Injury; Adenosine Triphosphate; Animals; Bacteremia; Disease Models, Animal; Escherichia coli Infections; Female; Kidney; Magnetic Resonance Spectroscopy; Phosphocreatine; Phosphorus Isotopes; Sheep; Shock; Shock, Septic; Thionucleotides

2005
Myocardial energy metabolism and morphology in a canine model of sepsis.
    The American journal of physiology, 1994, Volume: 266, Issue:2 Pt 2

    The mechanism responsible for sepsis-induced myocardial depression is not known. To determine if sepsis-induced myocardial depression is caused by inadequate free energy available for work, we studied myocardial energy metabolism in a canine model of sepsis. Escherichia coli-infected (n = 18) or sterile (n = 16) fibrin clots were implanted intraperitoneally into beagles. Myocardial function and structure was assessed using radionuclide ventriculograms, echocardiograms, and light and electron microscopy. The adequacy of energy metabolism was evaluated by comparing catecholamine-induced work increases [myocardial O2 consumption (MVO2) and rate pressure product (RPP)] with a simultaneously obtained estimate of intracellular free energy [phosphocreatine-to-adenosine triphosphate ratio (PCr:ATP)] determined by 31P-magnetic resonance spectroscopy. When compared with control animals, septic animals had a decrease in left ventricular ejection fraction (EF, P < 0.0001) on day 1 and fractional shortening (FS, P < 0.0003) on day 2 after clot implantation. On day 2, neither septic nor control animals had statistically significant decreases in PCr:ATP, despite catecholamine-induced increases in MVO2 and RPP (mean maximal increases in septic animals 135 +/- 31 and 51 +/- 10%, respectively). Light and electron microscopic findings showed that hearts of septic animals, compared with control animals, had a greater degree of morphological abnormalities. Thus, in a canine model of sepsis with alterations in myocyte ultrastructure and documented myocardial depression (decreased EF and FS), intracellular free energy levels (PCr:ATP) were maintained despite catecholamine-induced increases in myocardial work (increased MVO2 and RPP), suggesting high-energy synthetic capabilities are not limiting cardiac function.

    Topics: Adenosine Triphosphate; Animals; Bacteremia; Disease Models, Animal; Dogs; Endothelium, Vascular; Energy Metabolism; Epinephrine; Escherichia coli Infections; Heart; Mitochondria, Heart; Mitochondrial Swelling; Myocardium; Myofibrils; Oxygen Consumption; Phenylephrine; Phosphocreatine; Reference Values; Time Factors; Ventricular Function, Left

1994