phosphatidylinositol-4-phosphate has been researched along with Hepatitis-C* in 6 studies
1 review(s) available for phosphatidylinositol-4-phosphate and Hepatitis-C
Article | Year |
---|---|
Phosphoinositides in the hepatitis C virus life cycle.
Eukaryotes possess seven different phosphoinositides (PIPs) that help form the unique signatures of various intracellular membranes. PIPs serve as docking sites for the recruitment of specific proteins to mediate membrane alterations and integrate various signaling cascades. The spatio-temporal regulation of PI kinases and phosphatases generates distinct intracellular hubs of PIP signaling. Hepatitis C virus (HCV), like other plus-strand RNA viruses, promotes the rearrangement of intracellular membranes to assemble viral replication complexes. HCV stimulates enrichment of phosphatidylinositol 4-phosphate (PI4P) pools near endoplasmic reticulum (ER) sites by activating PI4KIIIα, the kinase responsible for generation of ER-specific PI4P pools. Inhibition of PI4KIIIα abrogates HCV replication. PI4P, the most abundant phosphoinositide, predominantly localizes to the Golgi and plays central roles in Golgi secretory functions by recruiting effector proteins involved in transport vesicle generation. The PI4P effector proteins also include the lipid-transfer and structural proteins such as ceramide transfer protein (CERT), oxysterol binding protein (OSBP) and Golgi phosphoprotein 3 (GOLPH3) that help maintain Golgi-membrane composition and structure. Depletion of Golgi-specific PI4P pools by silencing PI4KIIIβ, expression of dominant negative CERT and OSBP mutants, or silencing GOLPH3 perturb HCV secretion. In this review we highlight the role of PIPs and specifically PI4P in the HCV life cycle. Topics: Animals; Antiviral Agents; Biological Transport; Cell Membrane; Endoplasmic Reticulum; Gene Silencing; Golgi Apparatus; Hepacivirus; Hepatitis C; Humans; Membrane Proteins; Minor Histocompatibility Antigens; Phosphatidylinositol Phosphates; Phosphotransferases (Alcohol Group Acceptor); Protein Serine-Threonine Kinases; Receptors, Steroid; Virus Assembly; Virus Replication | 2012 |
5 other study(ies) available for phosphatidylinositol-4-phosphate and Hepatitis-C
Article | Year |
---|---|
Sphingomyelin Is Essential for the Structure and Function of the Double-Membrane Vesicles in Hepatitis C Virus RNA Replication Factories.
Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the Topics: Biological Transport; Carrier Proteins; Cell Line; Ceramides; Endoplasmic Reticulum; Gene Knockout Techniques; Golgi Apparatus; HEK293 Cells; Hepacivirus; Hepatitis C; Humans; Phosphatidylinositol Phosphates; RNA, Viral; Sphingomyelins; Virus Replication | 2020 |
A role for retromer in hepatitis C virus replication.
Hepatitis C virus (HCV) has infected over 170 million people worldwide. Phosphatidylinositol 4-phosphate (PI4P) is the organelle-specific phosphoinositide enriched at sites of HCV replication. Whether retromer, a PI4P-related host transport machinery, unloads its cargo at HCV replication sites remains inconclusive. We sought to characterize the role of retromer in HCV replication. Here, we demonstrated the interaction between retromer subunit Vps35 and HCV NS5A protein by immunoprecipitation and GST pulldown. Vps35 colocalized with NS5A and PI4P in both OR6 replicon and JFH1 infected Huh 7.5.1 cells. HCV replication was inhibited upon silencing retromer subunits. CIMPR, a typical retromer cargo, participated in HCV replication. Our data suggest that retromer component Vps35 is recruited by NS5A to viral replication sites where PI4P unloads CIMPR. These findings demonstrate a dependence role of retromer in HCV replication and identify retromer as a potential therapeutic target against HCV. Topics: Cell Line; Hepacivirus; Hepatitis C; Humans; Phosphatidylinositol Phosphates; Vesicular Transport Proteins; Viral Nonstructural Proteins; Virus Replication | 2016 |
Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels.
Phosphatidylinositol 4-kinase type IIIα (PI4KA) is a host factor essential for hepatitis C virus replication and hence is a target for drug development. PI4KA has also been linked to endoplasmic reticulum exit sites and generation of plasma membrane phosphoinositides. Here, we developed highly specific and potent inhibitors of PI4KA and conditional knock-out mice to study the importance of this enzyme in vitro and in vivo. Our studies showed that PI4KA is essential for the maintenance of plasma membrane phosphatidylinositol 4,5-bisphosphate pools but only during strong stimulation of receptors coupled to phospholipase C activation. Pharmacological blockade of PI4KA in adult animals leads to sudden death closely correlating with the drug's ability to induce phosphatidylinositol 4,5-bisphosphate depletion after agonist stimulation. Genetic inactivation of PI4KA also leads to death; however, the cause in this case is due to severe intestinal necrosis. These studies highlight the risks of targeting PI4KA as an anti-hepatitis C virus strategy and also point to important distinctions between genetic and pharmacological studies when selecting host factors as putative therapeutic targets. Topics: Animals; Cell Membrane; Chlorocebus aethiops; COS Cells; Enzyme Activation; Gene Targeting; HEK293 Cells; Hepatitis C; Humans; Mice; Mice, Transgenic; Minor Histocompatibility Antigens; Phosphatidylinositol 4,5-Diphosphate; Phosphatidylinositol Phosphates; Phosphotransferases (Alcohol Group Acceptor); Type C Phospholipases | 2014 |
Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion.
Hepatitis C virus (HCV) RNA replicates within the ribonucleoprotein complex, assembled on the endoplasmic reticulum (ER)-derived membranous structures closely juxtaposed to the lipid droplets that facilitate the post-replicative events of virion assembly and maturation. It is widely believed that the assembled virions piggy-back onto the very low density lipoprotein particles for secretion. Lipid phosphoinositides are important modulators of intracellular trafficking. Golgi-localized phosphatidylinositol 4-phosphate (PI4P) recruits proteins involved in Golgi trafficking to the Golgi membrane and promotes anterograde transport of secretory proteins. Here, we sought to investigate the role of Golgi-localized PI4P in the HCV secretion process. Depletion of the Golgi-specific PI4P pool by Golgi-targeted PI4P phosphatase hSac1 K2A led to significant reduction in HCV secretion without any effect on replication. We then examined the functional role of a newly identified PI4P binding protein GOLPH3 in the viral secretion process. GOLPH3 is shown to maintain a tensile force on the Golgi, required for vesicle budding via its interaction with an unconventional myosin, MYO18A. Silencing GOLPH3 led to a dramatic reduction in HCV virion secretion, as did the silencing of MYO18A. The reduction in virion secretion was accompanied by a concomitant accumulation of intracellular virions, suggesting a stall in virion egress. HCV-infected cells displayed a fragmented and dispersed Golgi pattern, implicating involvement in virion morphogenesis. These studies establish the role of PI4P and its interacting protein GOLPH3 in HCV secretion and strengthen the significance of the Golgi secretory pathway in this process. Topics: Biological Transport, Active; Cell Line, Tumor; Golgi Apparatus; Hepacivirus; Hepatitis C; Humans; Intracellular Membranes; Membrane Proteins; Myosins; Phosphatidylinositol Phosphates; Virion; Virus Release | 2012 |
The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C virus-induced host membrane rearrangement.
Hepatitis C virus (HCV), like other positive-sense RNA viruses, replicates on an altered host membrane compartment that has been called the "membranous web." The mechanisms by which the membranous web are formed from cellular membranes are poorly understood. Several recent RNA interference screens have demonstrated a critical role for the host phosphatidylinositol 4-kinase PI4KA in HCV replication. We have sought to define the function of PI4KA in viral replication.. Using a nonreplicative model of membranous web formation, we show that PI4KA silencing leads to aberrant web morphology. Furthermore, we find that PI4KA and its product, phosphatidylinositol 4-phosphate, are enriched on membranous webs and that PI4KA is found in association with NS5A in HCV-infected cells. While the related lipid kinase PI4KB also appears to support HCV replication, it does not interact with NS5A. Silencing of PI4KB does not overtly impair membranous web morphology or phosphatidylinositol 4-phosphate enrichment at webs, suggesting that it acts at a different point in viral replication. Finally, we demonstrate that the aberrant webs induced by PI4KA silencing require the activity of the viral NS3-4A serine protease but not integrity of the host secretory pathway.. PI4KA is necessary for the local enrichment of PI 4-phosphate at the HCV membranous web and for the generation of morphologically normal webs. We also show that nonreplicative systems of web formation can be used to order molecular events that drive web assembly. Topics: 1-Phosphatidylinositol 4-Kinase; Cell Line, Tumor; Cell Membrane; Cluster Analysis; Endoplasmic Reticulum; Gene Silencing; Golgi Apparatus; Hepacivirus; Hepatitis C; Host-Pathogen Interactions; Humans; Phosphatidylinositol Phosphates; Polyproteins; Protein Binding; Protein Transport; Signal Transduction; Viral Nonstructural Proteins | 2011 |