phorbol-12-13-didecanoate has been researched along with Inflammation* in 4 studies
4 other study(ies) available for phorbol-12-13-didecanoate and Inflammation
Article | Year |
---|---|
Growth Hormone Releasing Peptide-2 Attenuation of Protein Kinase C-Induced Inflammation in Human Ovarian Granulosa Cells.
Cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) are two important inflammatory mediators in ovulation. Ghrelin may modulate inflammatory signaling via growth hormone secretagogue receptors. We investigated the role of ghrelin in KGN human ovarian granulosa cells using protein kinase C (PKC) activator phorbol 12, 13-didecanoate (PDD) and synthetic ghrelin analog growth hormone releasing peptide-2 (GHRP-2). GHRP-2 attenuated PDD-induced expression of protein and mRNA, the promoter activity of COX-2 and IL-8 genes, and the secretion of prostaglandin E2 (PGE₂) and IL-8. GHRP-2 promoted the degradation of PDD-induced COX-2 and IL-8 proteins with the involvement of proteasomal and lysosomal pathways. PDD-mediated COX-2 production acts via the p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways; PDD-mediated IL-8 production acts via the p38, JNK and ERK pathways. GHRP-2 reduced the PDD-induced phosphorylation of p38 and JNK and activator protein 1 (AP-1) reporter activation and PDD-induced NF-κB nuclear translocation and reporter activation. The inhibitors of mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2 (PP2A) reduced the inhibitory effect of GHRP-2 on PDD-induced COX-2 and IL-8 expression. Our findings demonstrate an anti-inflammatory role for ghrelin (GHRP-2) in PKC-mediated inflammation of granulosa cells, at least in part, due to its inhibitory effect on PKC-induced activation of p38, JNK and NF-κB, possibly by targeting to MKP-1 and PP2A. Topics: Cell Line, Tumor; Cyclooxygenase 2; Enzyme-Linked Immunosorbent Assay; Female; Ghrelin; Granulosa Cells; Humans; Inflammation; Interleukin-8; Oligopeptides; Phorbol Esters; Protein Kinase C; Reverse Transcriptase Polymerase Chain Reaction; Transcription Factor AP-1 | 2016 |
Possible involvement of TRPV1 and TRPV4 in nociceptive stimulation- induced nocifensive behavior and neuroendocrine response in mice.
Members of the transient receptor potential (TRP) family of ion channels play important roles in inflammation and pain. Here, we showed that both TRPV1 and TRPV4 might contribute to biphasic nocifensive behavior and neuroendocrine response following a formalin test. We subcutaneously injected saline, formalin, or the TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD) into one hindpaw of wild-type (WT), TRPV1-deficient (Trpv1(-/-)), and TRPV4-deficient (Trpv4(-/-)) mice to investigate nocifensive behaviors (phase I [0-10 min] and phase II [10-60 min]) and Fos expression in the dorsal horn of the spinal cord and other brain regions related to pain, in the paraventricular nucleus (PVN), paraventricular nucleus of the thalamus, the medial habenular nucleus, the medial nucleus of the amygdala and capsular part of the central amygdala. Subcutaneous (s.c.) injection of formalin caused less nocifensive behavior in Trpv1(-/-) and Trpv4(-/-) mice than in WT mice during phase I. In phase II, however, formalin induced less nocifensive behavior only in the Trpv1(-/-) mice, but not in the Trpv4(-/-) mice, relative to WT mice. The number of Fos-like immunoreactive (LI) neurons in laminae I-II of the dorsal horn increased in all types of mice 90 min after s.c. injection of formalin; however, there was no difference in the other regions between saline- and formalin-treated mice. Furthermore, s.c. injection of 4α-PDD did not induce nociceptive behavior nor influence the number of Fos-LI neurons in the all above mentioned regions in any of the mice. These results suggest that TRPV4-mediated nociceptive information from the peripheral tissue excluding the spinal pathway might be involved the formalin behavioral response during phase I. Only TRPV1 might regulate the formalin behavioral response in peripheral neuron. Topics: Animals; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurosecretory Systems; Nociceptors; Pain; Pain Measurement; Phorbol Esters; Proto-Oncogene Proteins c-fos; Spinal Cord; Spinal Cord Dorsal Horn; TRPV Cation Channels | 2015 |
Role of transient receptor potential vanilloid 4 in rat joint inflammation.
To determine whether activation of transient receptor potential vanilloid 4 (TRPV-4) induces inflammation in the rat temporomandibular joint (TMJ), and to assess the effects of TRPV-4 agonists and proinflammatory mediators, such as a protease-activated receptor 2 (PAR-2) agonist, on TRPV-4 responses.. Four hours after intraarticular injection of carrageenan into the rat joints, expression of TRPV-4 and PAR-2 in trigeminal ganglion (TG) neurons and in the TMJs were evaluated by real-time reverse transcription-polymerase chain reaction and immunofluorescence, followed by confocal microscopy. The functionality of TRPV-4 and its sensitization by a PAR-2-activating peptide (PAR-2-AP) were analyzed by measuring the intracellular Ca(2+) concentration in TMJ fibroblast-like synovial cells or TG neurons. Plasma extravasation, myeloperoxidase activity, and the head-withdrawal threshold (index of mechanical allodynia) were evaluated after intraarticular injection of selective TRPV-4 agonists, either injected alone or coinjected with PAR-2-AP.. In the rat TMJs, TRPV-4 and PAR-2 expression levels were up-regulated after the induction of inflammation. Two TRPV-4 agonists specifically activated calcium influx in TMJ fibroblast-like synovial cells or TG neurons. In vivo, the agonists triggered dose-dependent increases in plasma extravasation, myeloperoxidase activity, and mechanical allodynia. In synovial cells or TG neurons, pretreatment with PAR-2-AP potentiated a TRPV-4 agonist-induced increase in [Ca(2+) ](i) . In addition, TRPV-4 agonist-induced inflammation was potentiated by PAR-2-AP in vivo.. In this rat model, TRPV-4 is expressed and functional in TG neurons and synovial cells, and activation of TRPV-4 in vivo causes inflammation in the TMJ. Proinflammatory mediators, such as PAR-2 agonists, sensitize the activity of TRPV-4. These results identify TRPV-4 as an important signal of inflammation in the joint. Topics: Animals; Calcium; Carrageenan; Gene Expression; Hyperalgesia; Inflammation; Male; Neurons; Oligopeptides; Phorbol Esters; Rats; Rats, Wistar; Receptor, PAR-2; Synovial Membrane; Temporomandibular Joint; TRPV Cation Channels | 2012 |
h-sgk serine-threonine protein kinase gene as transcriptional target of transforming growth factor beta in human intestine.
Recently, the immediate early gene h-sgk was cloned as a hypertonicity-induced gene from human hepatoma cells. The aim of this study was to localize h-sgk messenger RNA (mRNA) expression in normal and inflamed intestinal mucosa and to identify potential transcriptional regulators.. h-sgk mRNA in small intestinal mucosa from healthy persons and patients with Crohn's disease was determined by in situ hybridization. Transcriptional regulation was studied by Northern blot analysis of total RNA isolated from cultured human Intestine 407, U937, and HepG2 cells.. In normal ileum, h-sgk mRNA was selectively localized to the apical villus enterocytes, whereas no staining was detected in crypt cells. In Crohn's disease, enterocytes of the crypts expressed h-sgk and abundant h-sgk positive inflammatory cells appeared in the lamina propria. Combined h-sgk in situ hybridization and immunohistochemical analysis of CD68 antigen expression identified a part of these cells as macrophages. In addition to spatial correlation of transforming growth factor (TGF)-beta1 protein and h-sgk mRNA expression, h-sgk transcription in human Intestine 407 and HepG2 cells as well as in U937 monocytes/macrophages was strongly induced by TGF-beta1 in vitro.. h-sgk expression in normal and inflamed intestinal mucosa may be regulated by TGF-beta1 and may contribute to the pleiotropic actions of TGF-beta1 in mucosal cell populations. Topics: Antigens, CD; Antigens, Differentiation, Myelomonocytic; Blotting, Northern; Calcimycin; Cells, Cultured; Crohn Disease; Cycloheximide; Gene Expression Regulation; Humans; Ileum; Immediate-Early Proteins; Immunohistochemistry; In Situ Hybridization; Inflammation; Interleukin-1; Intestinal Mucosa; Ionophores; Nuclear Proteins; Phorbol Esters; Protein Serine-Threonine Kinases; RNA, Messenger; Transcription, Genetic; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha; U937 Cells | 1999 |