phorbol-12-13-didecanoate and Hypertension

phorbol-12-13-didecanoate has been researched along with Hypertension* in 1 studies

Other Studies

1 other study(ies) available for phorbol-12-13-didecanoate and Hypertension

ArticleYear
Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication.
    Hypertension (Dallas, Tex. : 1979), 2009, Volume: 53, Issue:2

    To test the hypothesis that activation of the transient receptor potential vanilloid 4 (TRPV4) channel conveys a hypotensive effect that is enhanced during salt load, male Wistar rats fed a normal-sodium (0.5%) or high-sodium (HS; 4%) diet for 3 weeks were given 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), a specific TRPV4 activator, in the presence or absence of capsazepine, a selective TRPV1 blocker, ruthenium red, a TRPV4 blocker, or TRPV4 small hairpin RNA that selectively knockdowns TRPV4. 4 alpha-PDD (1, 2.5, or 5 mg/kg IV) dose-dependently decreased mean arterial pressure (P<0.05). HS enhanced 4 alpha-PDD-induced depressor effects as well as 4 alpha-PDD-mediated release of calcitonin gene-related peptide and substance P (P<0.001). Ruthenium red markedly blunted (P<0.001), whereas capsazepine slightly attenuated (P<0.05) 4 alpha-PDD-induced depressor effects in HS and normal-sodium diet rats. Ruthenium red alone increased baseline mean arterial pressure in both HS and normal-sodium diet rats with a greater magnitude in the former (P<0.05). Western blot analysis showed that HS increased TRPV4 expression in dorsal root ganglia and mesenteric arteries (P<0.05) but not the renal cortex and medulla. Gene-silencing approach revealed that TRPV4 small hairpin RNA downregulated TRPV4 expression leading to blunted 4 alpha-PDD-induced hypotension (P<0.05). Thus, TRPV4 activation decreases blood pressure in rats given a normal-sodium diet. HS enhances TRPV4 expression in sensory nerves/mesenteric arteries and TRPV4-mediated depressor effects and calcitonin gene-related peptide/substance P release such that HS causes a greater increase in blood pressure when TRPV4 is blocked. Our data indicate that TRPV4 activation may constitute a compensatory mechanism in preventing salt-induced increases in blood pressure.

    Topics: Animals; Blood Pressure; Calcitonin Gene-Related Peptide; Capsaicin; Disease Models, Animal; Dose-Response Relationship, Drug; Ganglia, Spinal; Hypertension; Hypotension; Kidney; Male; Mesenteric Arteries; Phorbol Esters; Rats; Rats, Wistar; Ruthenium Red; Salt Tolerance; Sodium Chloride, Dietary; Substance P; TRPV Cation Channels

2009