pheophytin-a has been researched along with Dehydration* in 22 studies
1 review(s) available for pheophytin-a and Dehydration
Article | Year |
---|---|
Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis.
Most agricultural land, as a result of climate change, experiences severe stress that significantly reduces agricultural yields. Crop sensing by imaging techniques allows early-stage detection of biotic or abiotic stress to avoid damage and significant yield losses. Among the top certified imaging techniques for plant stress detection is chlorophyll Topics: Agriculture; Chlorophyll A; Dehydration; Humans; Optical Imaging; Stress, Physiological | 2023 |
21 other study(ies) available for pheophytin-a and Dehydration
Article | Year |
---|---|
Physiology and production of sugar-apple under water stress and application of proline.
The objective of this study was to evaluate the physiology and production of sugar-apple as a function of irrigation intervals and foliar application of proline under the conditions of Paraíba's semi-arid region. A randomized block design was laid out in a 4 × 2 factorial scheme, with treatments resulting from the combination of four irrigation intervals (1, 4, 8 and 12 days) and two concentrations of proline (0 and 10 mM), with four replicates, and the plot consisted of four usable plants. Increase in irrigation intervals reduced the gas exchange of sugar-apple plants at 298 days after transplanting. Exogenous application of proline at concentration of 10 mM increased contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids and fruit fresh mass in plants grown under 12-day irrigation intervals. Topics: Chlorophyll A; Dehydration; Malus; Proline; Sugars | 2023 |
Physiology of gamma-aminobutyric acid treated Capsicum annuum L. (Sweet pepper) under induced drought stress.
There is now widespread agreement that global warming is the source of climate variability and is a global danger that poses a significant challenge for the 21st century. Climate crisis has exacerbated water deficit stress and restricts plant's growth and output by limiting nutrient absorption and raising osmotic strains. Worldwide, Sweet pepper is among the most important vegetable crops due to its medicinal and nutritional benefits. Drought stress poses negative impacts on sweet pepper (Capsicum annuum L.) growth and production. Although, γ aminobutyric acid (GABA) being an endogenous signaling molecule and metabolite has high physio-molecular activity in plant's cells and could induce tolerance to water stress regimes, but little is known about its influence on sweet pepper development when applied exogenously. The current study sought to comprehend the effects of foliar GABA application on vegetative development, as well as physiological and biochemical constituents of Capsicum annuum L. A Field experiment was carried out during the 2021 pepper growing season and GABA (0, 2, and 4mM) concentrated solutions were sprayed on two Capsicum annuum L. genotypes including Scope F1 and Mercury, under drought stress of 50% and 30% field capacity. Results of the study showed that exogenous GABA supplementation significantly improved vegetative growth attributes such as, shoot and root length, fresh and dry weight, as well as root shoot ratio (RSR), and relative water content (RWC) while decreasing electrolyte leakage (EL). Furthermore, a positive and significant effect on chlorophyll a, b, a/b ratio and total chlorophyll content (TCC), carotenoids content (CC), soluble protein content (SPC), soluble sugars content (SSC), total proline content (TPC), catalase (CAT), and ascorbate peroxidase (APX) activity was observed. The application of GABA at 2mM yielded the highest values for these variables. In both genotypes, peroxidase (POD) and superoxide dismutase (SOD) content increased with growing activity of those antioxidant enzymes in treated plants compared to non-treated plants. In comparison with the rest of GABA treatments, 2mM GABA solution had the highest improvement in morphological traits, and biochemical composition. In conclusion, GABA application can improve development and productivity of Capsicum annuum L. under drought stress regimes. In addition, foliar applied GABA ameliorated the levels of osmolytes and the activities of antioxidant enzymes involve Topics: Antioxidants; Capsicum; Chlorophyll A; Crops, Agricultural; Dehydration; Droughts | 2023 |
Co-inoculation of mycorrhizal fungi and plant growth-promoting rhizobacteria improve growth, biochemical and physiological attributes in
Because of swift climate change, drought is a primary environmental factor that substantially diminishes plant productivity. Furthermore, the increased use of chemical fertilizers has given rise to numerous environmental problems and health risks. Presently, there is a transition towards biofertilizers to enhance crops' yield, encompassing medicinal and aromatic varieties.. This study aimed to explore the impacts of plant growth-promoting rhizobacteria (PGPR), both independently and in conjunction with arbuscular mycorrhizal fungi (AMF), on various morphological, physiological, and phytochemical characteristics of. The findings of the study revealed that under water-stress conditions, the dry yield and relative water content of Topics: Chlorophyll A; Dehydration; Limonene; Mycorrhizae; Oils, Volatile; Plants | 2023 |
Methionine-induced regulation of growth, secondary metabolites and oxidative defense system in sunflower (Helianthus annuus L.) plants subjected to water deficit stress.
Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions. Topics: Ascorbic Acid; Betaine; Chlorophyll A; Dehydration; Gene Expression Regulation, Plant; Helianthus; Hydrogen Peroxide; Malondialdehyde; Methionine; Oxidative Stress; Peroxidase; Plant Shoots; Secondary Metabolism | 2021 |
Genetic mapping of physiological traits associated with terminal stage drought tolerance in rice.
Drought during reproductive stage is among the main abiotic stresses responsible for drastic reduction of grain yield in rainfed rice. The genetic mechanism of reproductive stage drought tolerance is very complex. Many physiological and morphological traits are associated with this stress tolerance. Robust molecular markers are required for detection and incorporation of these correlated physiological traits into different superior genetic backgrounds. Identification of gene(s)/QTLs controlling reproductive stage drought tolerance and its deployment in rainfed rice improvement programs are very important.. QTLs linked to physiological traits under reproductive stage drought tolerance were detected by using 190 F. The three novel QTLs, qRCC1.1, qCHLa1.1 and qPRO3.1 controlling relative chlorophyll content, chlorophyll a and proline content, respectively were identified in the mapping population derived from CR 143-2-2 and Krishnahamsa. These 3 QTLs will be useful for enhancement of terminal drought stress tolerance through marker-assisted breeding approach in rice. Topics: Chlorophyll A; Chromosome Mapping; Chromosomes, Plant; Dehydration; Droughts; Genotype; Oryza; Phenotype; Quantitative Trait Loci; Water | 2020 |
Evaluating stress responses in cowpea under drought stress.
Drought impact on plants is an increasing concern under the climate change scenario. Cowpea (Vigna unguiculata L. Walp.) is considered as one of the most tolerant legume crops to drought, being the search for the best well-adapted genotypes crucial to face the future challenges. Different approaches have been used for differentiating plant responses to drought stress. Plants of four cowpea genotypes were submitted to three watering regimens (a severe and moderate drought stress, and well-watered control) during 15 days, and several physiological, biochemical and molecular parameters were evaluated. Stressed plants revealed commonly-described drought stress characteristics, but not all assayed parameters were useful for discriminating plants with different drought severities or genotypes. The analyses which have contributed most to genotype discrimination were those related with stomatal function, and biochemical markers such as proline and anthocyanin contents. Antioxidant enzymes activities and related genes expression did not differed among genotypes or upon drought stress treatments, suggesting that scavenging enzymes are not involved in the differential ability of cowpea plants to survive under drought stress. This information will be useful to evaluate and use genetic resources, as well as design strategies for breeding cowpea resistance to drought stress. Topics: Anthocyanins; Biomarkers; Chlorophyll A; Dehydration; Genes, Plant; Hydrogen Peroxide; Lipid Peroxidation; Peroxidase; Photosynthesis; Proline; Superoxide Dismutase; Transcriptome; Vigna | 2019 |
Genetic and Physiological Dissection of Photosynthesis in Barley Exposed to Drought Stress.
Balanced photosynthesis under drought is essential for better survival and for agricultural benefits in terms of biomass and yield. Given the current attempts to improve the photosynthetic efficiency for greater crop yield, the explanation of the genetic basis of that process, together with the phenotypic analysis, is significant in terms of both basic studies and potential agricultural application. Therefore, the main objective of this study was to uncover the molecular basis of the photosynthesis process under drought stress in barley. To address that goal, we conducted transcriptomic examination together with detailed photosynthesis analysis using the JIP-test. Using this approach, we indicated that photosynthesis is a process that is very early affected in barley seedlings treated with severe drought stress. Rather than focusing on individual genes, our strategy was pointed to the identification of groups of genes with similar expression patterns. As such, we identified and annotated almost 150 barley genes as crucial core-components of photosystems, electron transport components, and Calvin cycle enzymes. Moreover, we designated 17 possible regulatory interactions between photosynthesis-related genes and transcription factors in barley. Summarizing, our results provide a list of candidate genes for future genetic research and improvement of barley drought tolerance by targeting photosynthesis. Topics: Abscisic Acid; Chlorophyll A; Dehydration; Droughts; Electron Transport; Fluorescence; Gene Expression Regulation, Plant; Genes, Plant; Genotype; High-Throughput Nucleotide Sequencing; Hordeum; Oxygen; Photosynthesis; Promoter Regions, Genetic; Seedlings; Stress, Physiological; Transcription Factors; Transcriptome | 2019 |
The multi-purpose role of hairiness in the lichens of coastal environments: Insights from Seirophora villosa (Ach.) Frödén.
The fruticose epiphytic lichen Seirophora villosa, strictly associated with Juniperus shrublands in the Mediterranean basin, was used to investigate the role of hairiness on a lichen thallus, as a characteristic morphological trait. We evaluated the effect of hair removal on the physiological parameters of a set of samples, during desiccation and on exposure to different salt concentrations. Hairy thalli were less affected by salt, suggesting that during dehydration, the presence of hair protects the thallus from light irradiance, oxidative stresses and the lipid peroxidation generated by free radicals, and could offer passive, but selective, water control. Our results showed that hair could not only increase thallus surface and promote water absorption when availability is low, but could also repel the salt dissolved in water by activating a passive resistance mechanism, by preventing salt entering. Topics: Antioxidants; Carotenoids; Chlorophyll A; Chlorophyta; Dehydration; Free Radical Scavengers; Hydrogen Peroxide; Lichens; Lipid Peroxidation; Malondialdehyde; Mediterranean Region; Oxidative Stress; Photosynthesis; Reactive Oxygen Species; Salt Stress; Spectrometry, Fluorescence; Water | 2019 |
Relation between water status and desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa.
The relation between water status and expression profiles of desiccation -related genes has been studied in the desiccation tolerant (DT) aeroterrestrial green microalga Trebouxia gelatinosa, a common lichen photobiont. Algal colonies were desiccated in controlled conditions and during desiccation water content (WC) and water potential (Ψ) were measured to find the turgor loss point (Ψ Topics: Chlorophyll A; Chlorophyta; Dehydration; Desiccation; Gene Expression; Genes, Plant; HSP70 Heat-Shock Proteins; Lichens; Phylogeny; Real-Time Polymerase Chain Reaction; Transcriptome; Water | 2018 |
Nitric oxide mitigates the effect of water deficit in Crambe abyssinica.
Crambe abyssinica is widely cultivated in the off-season in the Midwest region of Brazil with great potential for biodeisel production. Low precipitation is characteristic of this region, which can drastically affect the productivity of C. abyssinica. Signaling molecules, such as nitric oxide (NO), can potentially alleviate the effects of water stress on plants. Here we test whether nitric oxide, applied by donor sodium nitroprusside (SNP), can alleviate the occurrence of water deficit damages in Crambe plants and maintain physiological and biochemical processes. Crambe plants were sprayed with three doses of SNP (0, 75, and 150 μM) and were submitted to two water levels (100% and 50% of the maximum water holding capacity). After 32 and 136 h, leaves were analyzed to evaluate the concentration of NO, water relations, gas exchange, chlorophyll a fluorescence, chloroplastidic pigments, proline, malondialdehyde, hydrogen peroxide, superoxide anions, and the antioxidant enzymes activity. Application of SNP allowed the maintenance of gas exchange, chlorophyll fluorescence parameters, and activities of antioxidant enzymes in plants exposed to water deficit, as well as increased the concentration of NO, proline, chloroplastidic pigments and osmotic potential. The application of SNP also decreased the concentration of malondialdehyde and reactive oxygen species in plants submitted to water deficit. Thus, the application of SNP prevented the occurrence of symptoms of water deficit in Crambe plants, maintaining the physiological and biochemical responses at reference levels, even under stress conditions. Topics: Chlorophyll A; Crambe Plant; Dehydration; Dose-Response Relationship, Drug; Hydrogen Peroxide; Malondialdehyde; Nitric Oxide; Nitroprusside; Osmotic Pressure; Plant Transpiration; Proline; Reactive Oxygen Species; Water | 2018 |
Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces.
Mediterranean tomato landraces adapted to arid environments represent an option to counteract drought, and to address the complexity of responses to water deficit and recovery, which is a crucial component of plant adaptation mechanisms. We investigated physiological, biochemical and molecular responses of two Mediterranean tomato landraces, 'Locale di Salina' (Lc) and 'Pizzutello di Sciacca' (Pz) under two dehydration periods and intermediate rehydration in greenhouse pot experiments. Relationship between CO Topics: Abscisic Acid; Carbon Dioxide; Chlorophyll; Chlorophyll A; Dehydration; Fluorescence; Mediterranean Region; Photosynthesis; Plant Growth Regulators; Plant Leaves; Plant Stomata; Poly(ADP-ribose) Polymerases; Polymerase Chain Reaction; Proline; Solanum lycopersicum | 2018 |
Current practice in neurosurgical needle insertion is limited by the straight trajectories inherent with rigid probes. One technique allowing curvilinear trajectories involves flexible bevel-tipped needles, which bend during insertion due to their asymmetry. In the brain, safety will require avoidance of the sharp tips often used in laboratory studies, in favor of a more rounded profile. Steering performance, on the other hand, requires maximal asymmetry. Design of safe bevel-tipped brain needles thus involves management of this tradeoff by adjusting needle gauge, bevel angle, and fillet (or tip) radius to arrive at a design that is suitably asymmetrical while producing strain, strain rate, and stress below the levels that would damage brain tissue.. The prototype needle selected was 1.66 mm in diameter, with bevel angle of 10° and fillet radius of 0.25 mm. Upon examination of postoperative CT and histological images, no differences in tissue trauma or hemorrhage were noted between the prototype needle and the Sedan needle.. The study indicates a general design technique for safe bevel-tipped brain needles based on comparison with relevant damage thresholds for strain, strain rate, and stress. The full potential of the technique awaits the determination of more exact safety thresholds.. Immunological responses after stings varied in bee and vespid venom-allergic patients. In patients under VIT, sIgE and sIgG Topics: Adolescent; Adult; Aged; Aged, 80 and over; Alkaline Phosphatase; Allergens; Animals; Antibody Specificity; Arthropod Venoms; Asymptomatic Diseases; Biological Variation, Population; Blood Cells; Catalysis; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cell Count; Chlorophyll; Chlorophyll A; Chlorophyta; Cross-Sectional Studies; Crystallography, X-Ray; Dehydration; Dietary Supplements; Electromagnetic Fields; Enzyme-Linked Immunosorbent Assay; Erythrocytes; Exercise; Exercise Therapy; Female; Goats; Hand Strength; Hemoglobins; Humans; Hypersensitivity; Immunoassay; Immunoglobulin E; Immunoglobulin G; Insect Bites and Stings; Lab-On-A-Chip Devices; Lichens; Light; Long-Term Care; Male; Mice; Microfluidic Analytical Techniques; Middle Aged; Muscle, Skeletal; Mutation; Osmotic Pressure; Paper; Peroxidases; Phenotype; Photosynthetic Reaction Center Complex Proteins; Polychaeta; Powders; Rabbits; Radio Frequency Identification Device; Rats; Rats, Sprague-Dawley; Sarcopenia; Seasons; Sensitivity and Specificity; Spectrophotometry, Ultraviolet; Streptavidin; Substrate Specificity; Textiles; Water; Whole-Body Irradiation; Young Adult | 2017 |
Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests.
The green algal genus Klebsormidium (Klebsormidiophyceae, Streptophyta) is a typical member of biological soil crusts (BSCs) worldwide. Ecophysiological studies focused so far on individual strains and thus gave only limited insight on the plasticity of this genus. In the present study, 21 Klebsormidium strains (K. dissectum, K. flaccidum, K. nitens, K. subtile) from temperate BSCs in Central European grassland and forest sites were investigated. Photosynthetic performance under desiccation and temperature stress was measured under identical controlled conditions. Photosynthesis decreased during desiccation within 335-505 min. After controlled rehydration, most isolates recovered, but with large variances between single strains and species. However, all K. dissectum strains had high recovery rates (>69%). All 21 Klebsormidium isolates exhibited the capability to grow under a wide temperature range. Except one strain, all others grew at 8.5 °C and four strains were even able to grow at 6.2 °C. Twenty out of 21 Klebsormidium isolates revealed an optimum growth temperature >17 °C, indicating psychrotrophic features. Growth rates at optimal temperatures varied between strains from 0.26 to 0.77 μ day Topics: Adaptation, Physiological; Biodiversity; Chlorophyll; Chlorophyll A; Dehydration; Desiccation; DNA, Ribosomal; Ecology; Ecosystem; Forests; Germany; Grassland; Photosynthesis; Phylogeny; Soil; Streptophyta; Stress, Physiological; Temperature | 2017 |
Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data.
The health of several East Antarctic moss-beds is declining as liquid water availability is reduced due to recent environmental changes. Consequently, a noninvasive and spatially explicit method is needed to assess the vigour of mosses spread throughout rocky Antarctic landscapes. Here, we explore the possibility of using near-distance imaging spectroscopy for spatial assessment of moss-bed health. Turf chlorophyll a and b, water content and leaf density were selected as quantitative stress indicators. Reflectance of three dominant Antarctic mosses Bryum pseudotriquetrum, Ceratodon purpureus and Schistidium antarctici was measured during a drought-stress and recovery laboratory experiment and also with an imaging spectrometer outdoors on water-deficient (stressed) and well-watered (unstressed) moss test sites. The stress-indicating moss traits were derived from visible and near infrared turf reflectance using a nonlinear support vector regression. Laboratory estimates of chlorophyll content and leaf density were achieved with the lowest systematic/unsystematic root mean square errors of 38.0/235.2 nmol g(-1) DW and 0.8/1.6 leaves mm(-1) , respectively. Subsequent combination of these indicators retrieved from field hyperspectral images produced small-scale maps indicating relative moss vigour. Once applied and validated on remotely sensed airborne spectral images, this methodology could provide quantitative maps suitable for long-term monitoring of Antarctic moss-bed health. Topics: Antarctic Regions; Bryophyta; Chlorophyll; Chlorophyll A; Dehydration; Droughts; Geography; Imaging, Three-Dimensional; Plant Leaves; Spectrum Analysis; Stress, Physiological; Water | 2015 |
Effects of habitat light conditions on the excitation quenching pathways in desiccating Haberlea rhodopensis leaves: an Intelligent FluoroSensor study.
Resurrection plants can survive dehydration to air-dry state, thus they are excellent models of understanding drought and dehydration tolerance mechanisms. Haberlea rhodopensis, a chlorophyll-retaining resurrection plant, can survive desiccation to relative water content below 10%. Leaves, detached from plants of sun and shade habitats, were moderately (∼50%) dehydrated in darkness. During desiccation, chlorophyll a fluorescence was detected by the recently innovated wireless Intelligent FluoroSensor (IFS) chlorophyll fluorometer, working with three different detectors: a pulse-amplitude-modulated (PAM) broadband channel and two channels to measure non-modulated red and far-red fluorescence. No change in area-based chlorophyll content of leaves was observed. The maximal quantum efficiency of photosystem II decreased gradually in both shade and sun leaves. Shade leaves could not increase antennae-based quenching, thus inactivated photosystem II took part in quenching of excess irradiation. Sun leaves seemed to be pre-adapted to quench excess light as they established an intensive increase in antennae-based non-photochemical quenching parallel to desiccation. The higher far-red to red antennae-based quenching may sign light-harvesting complex reorganization. Thus, compared to PAM, IFS chlorophyll fluorometer has additional benefits including (i) parallel estimation of changes in the Chl content and (ii) prediction of underlying processes of excitation energy quenching. Topics: Chlorophyll; Chlorophyll A; Dehydration; Ecosystem; Fluorescence; Fluorometry; Light; Plant Leaves; Tracheophyta | 2014 |
Influence of germination date on Dioon edule (Zamiaceae) seedling tolerance to water stress.
Dioon edule seedling mortality is mostly attributed to dehydration by prolonged drought, even when they present xeromorphic characteristics like the adult plants. The effect of germination date (GD) and soil water deficit on seedling tolerance to water stress was assessed. The seedlings germinated and grown from mature seeds every month from December to April GD were selected to evaluate the leaf area, photosynthetic pigment content, crassulacean acid metabolism (CAM) activity, stomatal conductance (gs) and leaflet anatomy at soil water potential (Ψs) of 0.0 MPa (day 1), -0.1 MPa (day 40), -1.0 MPa (day 90), -1.5 MPa (day 130), and a control (0.0 MPa at day 130) to recognize differences due to leaf development. The seedlings shifted from C3 to CAM cycling when exposed to water stress at Ψs of -1.0 MPa, like adult plants. The March-April GD seedlings with undeveloped sclerified hypodermis and stomata, presented reduced leaf area, lower Chlorophyll a/b ratio, higher CAM activity and midday partial stomatal closure when reached Ψs of -1.0 MPa. These have higher probability of dehydration during severe drought (February-April) than those of the December-February GD with similar Ψs. Plants used for restoration purposes must have full leaf development to increase the survival. Topics: Adaptation, Physiological; Carotenoids; Chlorophyll; Chlorophyll A; Dehydration; Germination; Photosynthesis; Plant Stomata; Seedlings; Soil; Time Factors; Water; Zamiaceae | 2014 |
Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars.
The olive tree (Olea europaea L.) is often exposed to severe water stress during the summer season. In this study, we determined the changes in total phenol content, oleuropein and hydroxytyrosol in the leaves of four olive cultivars ('Gaidourelia', 'Kalamon', 'Koroneiki' and 'Megaritiki') grown under water deficit conditions for two months. Furthermore, we investigated the photosynthetic performance in terms of gas exchange and chlorophyll a fluorescence, as well as malondialdehyde content and antioxidant activity. One-year-old self-rooted plants were subjected to three irrigation treatments that received a water amount equivalent to 100% (Control, C), 66% (Field Capacity 66%, FC(66)) and 33% (Field Capacity 33%, FC(33)) of field capacity. Measurements were conducted 30 and 60 days after the initiation of the experiment. Net CO(2) assimilation rate, stomatal conductance and F(v)/F(m) ratio decreased only in FC(33) plants. Photosynthetic rate was reduced mainly due to stomatal closure, but damage to PSII also contributed to this decrease. Water stress induced the accumulation of phenolic compounds, especially oleuropein, suggesting their role as antioxidants. Total phenol content increased in FC(33) treatment and oleuropein presented a slight increase in FC(66) and a sharper one in FC(33) treatment. Hydroxytyrosol showed a gradual decrease as water stress progressed. Malondialdehyde (MDA) content increased due to water stress, mostly after 60 days, while antioxidant activity increased for all cultivars in the FC(33) treatment. 'Gaidourelia' could be considered as the most tolerant among the tested cultivars, showing higher phenolic concentration and antioxidant activity and lower lipid peroxidation and photochemical damage after two months of water stress. The results indicated that water stress affected olive tree physiological and biochemical parameters and magnitude of this effect depended on genotype, the degree of water limitation and duration of treatment. However, the severity as well as the duration of water stress might exceed antioxidant capacity, since MDA levels and subsequent oxidative damage increased after two months of water deficit. Topics: Agricultural Irrigation; Antioxidants; Chlorophyll; Chlorophyll A; Dehydration; Genotype; Iridoid Glucosides; Iridoids; Lipid Peroxidation; Malondialdehyde; Olea; Oxidative Stress; Phenols; Phenylethyl Alcohol; Photosynthesis; Plant Leaves; Plant Roots; Plant Transpiration; Pyrans; Stress, Physiological | 2012 |
Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence.
Two soybean cultivars, one conventional and a glyphosate-tolerant (transgenic), were submitted to the water stress and the chlorophyll a fluorescence induced by UV light was monitored daily during 16 days. In this work, 40 pots in total, 20 per cultivar were used in the investigation. Each cultivar was divided in two groups, the control group and the group submitted to the water stress. The stress response of the cultivars was monitored by red to far-red fluorescence ratio. The data indicate that the water stress induced the earliest changes on the fluorescence ratio and chlorophyll content for the conventional cultivar. In addition, a comparative analysis of the fluorescence ratios of the cultivars reveals that conventional plants have higher chlorophyll content than transgenic ones. This result might be useful in the development of methodologies able to distinguish conventional to transgenic apart. Topics: Chlorophyll; Chlorophyll A; Dehydration; Fluorescence; Glycine max; Plants, Genetically Modified; Water | 2010 |
Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance.
Drought stress has multiple effects on the photosynthetic system. Here, we show that a decrease of the relative contribution of the I-P phase, DeltaV(IP) = -V(I) = (F(M)-F(I))/(F(M)- F(o)), to the fluorescence transient OJIP is observed in 10 drought-stressed barley and 9 chickpea varieties. The extent of the I-P loss in the barley varieties depended on their drought tolerance. The relative loss of the I-P phase seems to be related to a loss of photosystem (PS) I reaction centers as determined by 820-nm transmission measurements. In the second part of this study, the interaction of drought and heat stress in two barley varieties (the drought tolerant variety Aït Baha and the drought sensitive variety Lannaceur) was studied using a new approach. Heat stress was induced by exposing the plant leaves to temperatures of 25-45 degrees C and the inactivation of the O(2)-evolving complex (OEC) was followed measuring chlorophyll a (Chl a) fluorescence using a protocol consisting of two 5-ms pulses spaced 2.3 ms apart. In active reaction centers, the dark interval is long enough to allow the OEC to recover from the first pulse; whereas in heat-inactivated reaction centers it is not. In the latter category of reaction centers, no further fluorescence rise is induced by the second pulse. Lannaceur, under well-watered conditions, was more heat tolerant than Aït Baha. However, this difference was lost following drought stress. Drought stress considerably increased the thermostability of PS II of both varieties. Topics: Chlorophyll; Chlorophyll A; Dehydration; Fluorescence; Hordeum; Hot Temperature; Photosystem I Protein Complex; Photosystem II Protein Complex | 2009 |
Protein composition and native state of pigments of thylakoid membrane of wheat genotypes differently tolerant to water stress.
Protein composition and native state of chlorophylls were analyzed in two wheat (Triticum durum L.) genotypes with different tolerance to drought, Barakatli-95 (drought-tolerant) and Garagylchyg-2 (drought-sensitive), during water deficit. It is shown that the plants subjected to water deficit appear to have a slight increase in alpha- and beta-subunits of CF1 ATP-synthase complex (57.5 and 55 kD, respectively) in Barakatli-95 and their lower content in Garagylchyg-2. Steady-state levels of the core antenna of PS II (CP47 and CP43) and light-harvesting Chl a/b-apoproteins (LHC) II in the 29.5-24 kD region remained more or less unchanged in both wheat genotypes. The synthesis of 36 kD protein and content of low-molecular-weight polypeptides (21.5, 16.5, and 14 kD) were noticeably increased in the tolerant genotype Barakatli-95. Drought caused significant changes in the carotenoid region of the spectrum (400-500 nm) in drought-sensitive genotype Garagylchyg-2 (especially in the content of pigments of the violaxanthin cycle). A shift of the main band from 740-742 to 738 nm is observed in the fluorescence spectra (77 K) of chloroplasts from both genotypes under water deficiency, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. Topics: Adaptation, Biological; Chlorophyll; Chlorophyll A; Dehydration; Electrophoresis, Polyacrylamide Gel; Genotype; Light-Harvesting Protein Complexes; Photosynthetic Reaction Center Complex Proteins; Photosystem I Protein Complex; Photosystem II Protein Complex; Plant Proteins; Rosaniline Dyes; Spectrometry, Fluorescence; Spectrophotometry; Thylakoids; Triticum | 2006 |
Hardening by partial dehydration and ABA increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon.
The ability of partial dehydration and abscisic acid pretreatments to increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon was tested. *. Net photosynthesis and respiration were measured using infrared gas analysis during a drying and rehydration cycle. At the same time, the efficiency of photosystem two was measured using chlorophyll fluorescence, and the concentrations of chlorophyll a were spectrophotometrically assayed. Heat production was also measured during a shorter drying and rehydration cycle using differential dark microcalorimetry. *. Pretreating lichens by dehydrating them to a relative water content of approx. 0.65 for 3 d, followed by storing thalli hydrated for 1 d in the light, significantly improved their ability to recover net photosynthesis during rehydration after desiccation for 15 but not 30 d. Abscisic acid pretreatment could substitute for partial dehydration. The improved rates of photosynthesis during the rehydration of pretreated material were not accompanied by preservation of photosystem two activity or chlorophyll a concentrations compared with untreated lichens. Partial dehydration and ABA pretreatments appeared to have little direct effect on the desiccation tolerance of the mycobiont, because the bursts of respiration and heat production that occurred during rehydration were similar in control and pretreated lichens. *. Results indicate that the photobiont of P. polydactylon possesses inducible tolerance mechanisms that reduce desiccation-induced damage to carbon fixation, and will therefore improve the supply of carbohydrates to the whole thallus following stress. In this lichen, ABA is involved in signal transduction pathways that increase tolerance of the photobiont. Topics: Abscisic Acid; Chlorophyll; Chlorophyll A; Dehydration; Hot Temperature; Lichens; Oxidative Stress; Oxygen Consumption; Photosynthesis; Photosystem II Protein Complex; Time Factors; Water | 2005 |