phenylmercuric-acetate has been researched along with Brain-Ischemia* in 1 studies
1 other study(ies) available for phenylmercuric-acetate and Brain-Ischemia
Article | Year |
---|---|
S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death.
Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of neurodegenerative diseases and stroke. However, the mechanism of MMP activation remains unclear. We report that MMP activation involves S-nitrosylation. During cerebral ischemia in vivo, MMP-9 colocalized with neuronal nitric oxide synthase. S-Nitrosylation activated MMP-9 in vitro and induced neuronal apoptosis. Mass spectrometry identified the active derivative of MMP-9, both in vitro and in vivo, as a stable sulfinic or sulfonic acid, whose formation was triggered by S-nitrosylation. These findings suggest a potential extracellular proteolysis pathway to neuronal cell death in which S-nitrosylation activates MMPs, and further oxidation results in a stable posttranslational modification with pathological activity. Topics: Animals; Apoptosis; Brain Ischemia; Cell Line; Cells, Cultured; Cerebral Cortex; Cysteine; Enzyme Activation; Enzyme Precursors; Humans; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Molecular; Neurons; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Oxidation-Reduction; Phenylmercuric Acetate; Rats; Recombinant Proteins; Reperfusion; S-Nitrosothiols; Signal Transduction; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization | 2002 |