phenobarbital-sodium and Seizures

phenobarbital-sodium has been researched along with Seizures* in 3 studies

Other Studies

3 other study(ies) available for phenobarbital-sodium and Seizures

ArticleYear
Synthesis and anticonvulsant activity of some new pyrazolo[3,4-b]pyrazines and related heterocycles.
    Bioorganic & medicinal chemistry, 2014, Apr-01, Volume: 22, Issue:7

    A series of new pyrazolo[3,4-b]pyrazines containing, 1,2,4-oxadiazolyl, thiadiazolyl, imidazothiadiazolyl, thiazolidinonyl, substituents and other different substituents, was synthesized using 1,6-diphenyl-3-methyl-lH-pyrazolo[3,4-b]pyrazine-5-carbonitrile (2) as a starting material. Some of the newly prepared compounds were evaluated for their anticonvulsant activity. Compounds 9a, 13a-d and 14a at a dose of 10mg/kg showed very significant anticonvulsant activity and increased the latency time of PTZ-induced tonic seizures. Compound 9b showed significant effect.

    Topics: Animals; Anticonvulsants; Heterocyclic Compounds; Male; Mice; Molecular Structure; Pentylenetetrazole; Pyrazines; Seizures

2014
2-phosphonomethyl-pentanedioic acid (glutamate carboxypeptidase II inhibitor) increases threshold for electroconvulsions and enhances the antiseizure action of valproate against maximal electroshock-induced seizures in mice.
    European journal of pharmacology, 2006, Feb-15, Volume: 531, Issue:1-3

    This study examined the effect of 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a potent and selective inhibitor of glutamate carboxypeptidase II (GCP II), an enzyme releasing glutamate and N-acetyl-aspartate from synaptical terminals, on the electroconvulsive threshold in mice. Moreover, the influence of 2-PMPA on the anticonvulsant activities of four conventional antiepileptic drugs (carbamazepine, phenobarbital, phenytoin and valproate) was evaluated in the maximal electroshock-induced seizure test in mice. Results indicated that 2-PMPA (at a dose range of 50-200 mg/kg, i.p.) raised the electroconvulsive threshold in mice dose-dependently. Linear regression analysis of dose-response relationship between the doses of 2-PMPA and their corresponding threshold values allowed the calculation of threshold increasing dose by 20% (TID20), which was 109.2 mg/kg. Moreover, 2-PMPA administered i.p. at a constant dose of 150 mg/kg (the dose increasing the threshold for electroconvulsions) enhanced significantly the anticonvulsant action of valproate, by reducing its median effective dose (ED50) from 281.4 to 230.1 mg/kg (P<0.05). In contrast, 2-PMPA at the lower dose of 100 mg/kg (i.p.) had no impact on the antiseizure activity of valproate in the maximal electroshock-induced seizure test. Likewise, 2-PMPA at 100 and 150 mg/kg did not affect the antiseizure action of carbamazepine, phenobarbital and phenytoin against maximal electroshock-induced seizures in mice. Additionally, none of the combinations investigated between 2-PMPA (150 mg/kg, i.p.) and carbamazepine, phenobarbital, phenytoin and valproate (at their ED50 values) produced motor coordination impairment in the chimney test. Pharmacokinetic evaluation of interaction between 2-PMPA and valproate revealed that 2-PMPA at 150 mg/kg selectively increased total brain concentrations of valproate, remaining simultaneously without any effect on free plasma concentrations of valproate, indicating a pharmacokinetic nature of observed interaction in the maximal electroshock-induced seizures in mice. Based on our preclinical data, it may be concluded that 2-PMPA possesses a seizure modulating property by increasing the electroconvulsive threshold. The reduction of glutamate neurotransmission in the brain, as a consequence of inhibition of GCP II activity by 2-PMPA, was however insufficient to enhance the anticonvulsant activity of conventional antiepileptic drugs, except for valproate, whose antiseizure action agai

    Topics: Analysis of Variance; Animals; Anticonvulsants; Brain; Carbamazepine; Dose-Response Relationship, Drug; Drug Synergism; Electroshock; Glutamate Carboxypeptidase II; Male; Mice; Organophosphorus Compounds; Phenobarbital; Phenytoin; Psychomotor Performance; Seizures; Valproic Acid

2006
NAALADase (GCP II) inhibition prevents cocaine-kindled seizures.
    Neuropharmacology, 2002, Volume: 43, Issue:3

    The prediction that inhibition of NAALADase, an enzyme catalyzing the cleavage of glutamate from N-acetyl-aspartyl-glutamate, would produce antiepileptogenic effects against cocaine was tested. Cocaine kindled seizures were developed in male, Swiss-Webster mice by daily administration of 60 mg/kg cocaine for 5 days. The NAALADase inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) produced dose-dependent protection (10-100 mg/kg) against both the development of seizure kindling and the occurrence of seizures during the kindling process without observable behavioral side-effects. It is not likely that 2-PMPA produced protection against cocaine kindling by altering the potency of the convulsant stimulus as daily administration of 2-PMPA did not alter the convulsant thresholds for cocaine. Lower daily doses of cocaine (40 mg/kg) did not increase the incidence of seizures but produced kindling, as evidenced by the increase in seizure susceptibility when mice were probed with a higher dose of cocaine. 2-PMPA was also effective in preventing the development of sensitization to this covert kindling process. In contrast to its efficacy against cocaine kindled seizures, 2-PMPA failed to attenuate the convulsions engendered by acute challenges with pentylenetetrazole, bicuculline, N-methyl-D-aspartate, maximal electroshock or cocaine. Similarly, acutely-administered 2-PMPA did not block cocaine seizures in fully-kindled mice. NAALADase inhibition thus provides a novel means of attenuating the development of cocaine seizure kindling.

    Topics: Animals; Anticonvulsants; Behavior, Animal; Carboxypeptidases; Cocaine; Convulsants; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Epilepsy, Tonic-Clonic; Glutamate Carboxypeptidase II; Kindling, Neurologic; Male; Mice; Organophosphorus Compounds; Seizures

2002