phenanthrenes has been researched along with Heat-Stroke* in 2 studies
2 other study(ies) available for phenanthrenes and Heat-Stroke
Article | Year |
---|---|
Sodium tanshinone IIA sulfonate improves inflammation, aortic endothelial cell apoptosis, disseminated intravascular coagulation and multiple organ damage in a rat heat stroke model.
The aim of the present study was to investigate the effects of sodium tanshinone IIA sulfonate (STS) on inflammatory responses, aortic endothelial cell apoptosis, disseminated intravascular coagulation (DIC) and multiple organ damage in an animal model of classic heat stroke (CHS). The rats in the heat stroke (HS) and STS‑treated heat stroke (STS‑HS) groups were placed into a pre‑warmed animal temperature controller (ATC) at 35˚C. The moment at which the rectal temperature reached 43.5˚C was considered as the time of onset of HS. In the HS groups, the rats were removed from the ATC and allowed to recover at 26˚C for 0, 2, 6 or 12 h. In the STS‑HS groups, the rats received femoral vein injections of 5‑40 mg/kg STS immediately following the onset of HS and were subsequently placed at a temperature of 26˚C to recover for 6 h. In the present study, the serum levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 were assessed using ELISA, and the numbers of apoptotic aortic endothelial cells were investigated using terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick‑end labeling combined with immunofluorescence. In the HS groups, the serum levels of TNF‑α, IL‑1β and IL‑6, as well as the numbers of apoptotic aortic endothelial cells were increased compared with the normothermic control group. Additionally, the plasma prothrombin time, activated partial thromboplastin time and D‑dimer level were significantly increased in the HS group compared with the normothermic control group following recovery for 6 h. By contrast, the platelet count was decreased in the HS group compared with the normothermic control group. The serum levels of creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase were increased and histopathological damage to multiple organs was observed in the HS group following recovery for 6 h. In the STS‑HS groups, cytokine levels and apoptotic aortic endothelial cell numbers were reduced compared with the HS group after 6 h recovery. STS (40 mg/kg) treatment additionally improved the serum levels of organ injury indicators and plasma indicators of coagulopathy, and prevented histopathological damage to multiple organs. These findings demonstrated that STS treatment may ameliorate multiple organ damage by attenuating inflammatory responses, aortic endothelial cell apoptosis and DIC in CHS. These results suggested that STS may hold potential a Topics: Animals; Apoptosis; Biomarkers; Cytokines; Disease Models, Animal; Disseminated Intravascular Coagulation; Endothelial Cells; Heat Stroke; Inflammation; Male; Phenanthrenes; Rats | 2017 |
Poly(ADP-ribose) polymerase-1 inhibition increases expression of heat shock proteins and attenuates heat stroke-induced liver injury.
Heat stroke is a life-threatening illness characterized by an increased core body temperature as a result of exposure to high ambient temperature. Despite advances in supportive care, heat stroke is often fatal, and no specific and effective therapies exist. The pathophysiological responses to heat stroke involve a systemic inflammatory response and a disseminated intravascular coagulation in the host, which lead to a multiorgan dysfunction syndrome. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear DNA-binding protein that has been shown to play a relevant role in cell necrosis and organ failure in various diseases associated with inflammation. Therefore, we set out to investigate whether inhibition of PARP activity might affect the heat stroke-induced injury.. Controlled animal study.. Research laboratory of an academic institution.. PARP-1-deficient mice (Parp-1(-/-)) and wild-type mice (C57BL/6J).. Wild-type mice untreated or treated with either PJ34 or 3-AB, two generic PARP inhibitors, and Parp-1(-/-) mice were subjected to heat exposure as a model to study heat stroke.. We measured rectal temperature, serum interleukin-1beta and interleukin-6, liver histology, and heat shock proteins expression. We found that the heat stroke-induced injury was attenuated in mice lacking PARP-1 and was markedly reduced in wild-type mice treated with PARP inhibitors. Interestingly, heat-induced expression of heat shock proteins 27 and 70 was boosted after PARP inhibition. Indeed, PARP inhibition increased expression of heat shock proteins 27 and 70 even in the absence of heat exposure. Accordingly, PARP inhibition increased thermal tolerance that may contribute to attenuate the clinical effects of heat stroke, resulting in increased survival.. Our results find a new protective function of PARP inhibitors and support their potential therapeutic application in the treatment of heat stroke. Topics: Animals; Cytokines; Heat Stroke; Heat-Shock Proteins; Hematocrit; Liver Diseases; Mice; Mice, Inbred C57BL; Mice, Transgenic; Phenanthrenes; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Weight Loss | 2008 |