phenanthrenes and Friedreich-Ataxia

phenanthrenes has been researched along with Friedreich-Ataxia* in 2 studies

Other Studies

2 other study(ies) available for phenanthrenes and Friedreich-Ataxia

ArticleYear
Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34.
    PloS one, 2016, Volume: 11, Issue:3

    An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia.

    Topics: Angiotensin II; Animals; Behavior, Animal; Cell Line; Cerebellum; Disease Models, Animal; DNA Damage; DNA Glycosylases; Female; Frataxin; Friedreich Ataxia; Gene Expression; Gene Expression Regulation; Gene Knockdown Techniques; Inflammation; Iron-Binding Proteins; Lipopolysaccharides; Mice; Microglia; Oxidative Stress; Phenanthrenes; Poly(ADP-ribose) Polymerases; RNA, Small Interfering

2016
Targeting lipid peroxidation and mitochondrial imbalance in Friedreich's ataxia.
    Pharmacological research, 2015, Volume: 99

    Friedreich's ataxia (FRDA) is an autosomal recessive disorder, caused by reduced levels of the protein frataxin. This protein is located in the mitochondria, where it functions in the biogenesis of iron-sulphur clusters (ISCs), which are important for the function of the mitochondrial respiratory chain complexes. Moreover, disruption in iron biogenesis may lead to oxidative stress. Oxidative stress can be the cause and/or the consequence of mitochondrial energy imbalance, leading to cell death. Fibroblasts from two FRDA mouse models, YG8R and KIKO, were used to analyse two different categories of protective compounds: deuterised poly-unsaturated fatty acids (dPUFAs) and Nrf2-inducers. The former have been shown to protect the cell from damage induced by lipid peroxidation and the latter trigger the well-known Nrf2 antioxidant pathway. Our results show that the sensitivity to oxidative stress of YG8R and KIKO mouse fibroblasts, resulting in cell death and lipid peroxidation, can be prevented by d4-PUFA and Nrf2-inducers (SFN and TBE-31). The mitochondrial membrane potential (ΔΨm) of YG8R and KIKO fibroblasts revealed a difference in their mitochondrial pathophysiology, which may be due to the different genetic basis of the two models. This suggests that variable levels of reduced frataxin may act differently on mitochondrial pathophysiology and that these two cell models could be useful in recapitulating the observed differences in the FRDA phenotype. This may reflect a different modulatory effect towards cell death that will need to be investigated further.

    Topics: Animals; Antioxidants; Cell Death; Cells, Cultured; Disease Models, Animal; Fibroblasts; Frataxin; Friedreich Ataxia; Iron; Iron-Binding Proteins; Lipid Peroxidation; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mitochondria; Oxidative Stress; Phenanthrenes; Phenotype

2015