pf-06463922 and Liver-Neoplasms

pf-06463922 has been researched along with Liver-Neoplasms* in 3 studies

Trials

1 trial(s) available for pf-06463922 and Liver-Neoplasms

ArticleYear
Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F.
    The New England journal of medicine, 2016, Jan-07, Volume: 374, Issue:1

    In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).

    Topics: Aminopyridines; Anaplastic Lymphoma Kinase; Binding Sites; Carcinoma, Non-Small-Cell Lung; Crizotinib; Drug Resistance, Neoplasm; Female; Humans; Lactams; Lactams, Macrocyclic; Liver Failure; Liver Neoplasms; Lung Neoplasms; Middle Aged; Molecular Structure; Mutation; Protein Kinase Inhibitors; Pyrazoles; Pyridines; Pyrimidines; Receptor Protein-Tyrosine Kinases; Sulfones

2016

Other Studies

2 other study(ies) available for pf-06463922 and Liver-Neoplasms

ArticleYear
Transformation to neuroendocrine carcinoma as a resistance mechanism to lorlatinib.
    Lung cancer (Amsterdam, Netherlands), 2019, Volume: 134

    Small cell transformation is a well-recognized mechanism of resistance to EGFR-TKI therapy in EGFR-mutant NSCLC, yet it remains a poorly-described phenomenon in ALK-rearranged NSCLC.. Chart and literature review.. We report a case of a patient with ALK-rearranged lung cancer progressing on three-lines of ALK-targeted therapies, with development of acquired resistance to lorlatinib, with both transformation to a neuroendocrine carcinoma, and acquisition of ALK 1196 M.. Given the inevitable development of resistance in ALK + NSCLC, if feasible, re-biopsy on progression should be standard over liquid biopsy. Neuroendocrine carcinoma transformation remains an important mechanism of acquired resistance to lorlatinib.

    Topics: Adult; Aminopyridines; Anaplastic Lymphoma Kinase; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Neuroendocrine; Cell Line, Tumor; Cell Transformation, Neoplastic; Drug Resistance, Neoplasm; ErbB Receptors; Gene Rearrangement; Humans; Lactams; Lactams, Macrocyclic; Liver Neoplasms; Lung Neoplasms; Male; Molecular Targeted Therapy; Mutation; Neoplasm Metastasis; Neoplasm Staging; Pyrazoles; Tomography, X-Ray Computed

2019
Rapid Acquisition of Alectinib Resistance in ALK-Positive Lung Cancer With High Tumor Mutation Burden.
    Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, 2019, Volume: 14, Issue:11

    The highly selective ALK receptor tyrosine kinase (ALK) inhibitor alectinib is standard therapy for ALK-positive lung cancers; however, some tumors quickly develop resistance. Here, we investigated the mechanism associated with rapid acquisition of resistance using clinical samples.. Autopsied samples were obtained from lung, liver, and renal tumors from a 51-year-old male patient with advanced ALK-positive lung cancer who had acquired resistance to alectinib in only 3 months. We established an alectinib-resistant cell line (ABC-14) from pleural effusion and an alectinib/crizotinib-resistant cell line (ABC-17) and patient-derived xenograft (PDX) model from liver tumors. Additionally, we performed next-generation sequencing, direct DNA sequencing, and quantitative real-time reverse transcription polymerase chain reaction.. ABC-14 cells harbored no ALK mutations and were sensitive to crizotinib while also exhibiting MNNG HOS transforming gene (MET) gene amplification and amphiregulin overexpression. Additionally, combined treatment with crizotinib/erlotinib inhibited cell growth. ABC-17 and PDX tumors harbored ALK G1202R, and PDX tumors metastasized to multiple organs in vivo, whereas the third-generation ALK-inhibitor, lorlatinib, diminished tumor growth in vitro and in vivo. Next-generation sequencing indicated high tumor mutation burden and heterogeneous tumor evolution. The autopsied lung tumors harbored ALK G1202R (c. 3604 G>A) and the right renal metastasis harbored ALK G1202R (c. 3604 G>C); the mutation thus comprised different codon changes.. High tumor mutation burden and heterogeneous tumor evolution might be responsible for rapid acquisition of alectinib resistance. Timely lorlatinib administration or combined therapy with an ALK inhibitor and other receptor tyrosine-kinase inhibitors might constitute a potent strategy.

    Topics: Aminopyridines; Anaplastic Lymphoma Kinase; Animals; Antineoplastic Combined Chemotherapy Protocols; Carbazoles; Cell Line, Tumor; Crizotinib; Drug Resistance, Neoplasm; Erlotinib Hydrochloride; Humans; Kidney Neoplasms; Lactams; Lactams, Macrocyclic; Liver Neoplasms; Lung Neoplasms; Male; Mice; Mice, Inbred NOD; Middle Aged; Mutation; Piperidines; Pyrazoles; Xenograft Model Antitumor Assays

2019