pf-00299804 has been researched along with Neoplasms* in 7 studies
4 review(s) available for pf-00299804 and Neoplasms
Article | Year |
---|---|
FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application.
Considerable progress has been made in the development of anticancer agents over the past few decades, and a lot of new anticancer agents from natural and synthetic sources have been produced. Among heterocyclic compounds, pyrimidine-fused bicyclic heterocycles possess a variety of biological activities such as anticancer, antiviral, etc. To date, 147 pyrimidine-fused bicyclic heterocycles have been approved for clinical assessment or are currently being used in clinic, 57 of which have been approved by FDA for clinical treatment of various diseases, and 22 of them are being used in the clinic for the treatment of different cancers. As the potentially privileged scaffolds, pyrimidine-fused bicyclic heterocycles may be used to discover new drugs with similar biological targets and improved therapeutic efficacy. This review aims to provide an overview of the anticancer applications and synthetic routes of 22 approved pyrimidine-fused bicyclic heterocyclic drugs in clinic. Topics: Antineoplastic Agents; Bridged Bicyclo Compounds, Heterocyclic; Humans; Molecular Structure; Neoplasms; Pyrimidines; United States; United States Food and Drug Administration | 2021 |
The association between anti-tumor potency and structure-activity of protein-kinases inhibitors based on quinazoline molecular skeleton.
Quinazoline was originally utilized as an anti-tumor treatment, and its various derivatives can be directly extracted from plants. In recent years, protein kinases (PK) have been well recognized in the development of tumor drugs. Functionally, PK serves a vital role in the apoptosis, proliferation, differentiation, migration and cell cycle of tumor cells. Due to its good physicochemical properties, quinazoline skeleton, a superior type of PK inhibitor, has been extensively used in anti-tumor drug design. An increasing number of studies on quinazoline synthesis have been reported and used by different groups to effectively develop novel derivatives. Thus, several studies have been approved for the use of quinazoline derivatives as inhibitors of other kinases, including Src and histone deacetylase. The aim of the present review was to summarize the mechanism of quinazoline compounds as PK inhibitors, their biological structure-activity relationship such as the substituted quinazoline compounds with different functional groups in the apoptotic process, and their effect on the proliferation of tumor cells. The development of novel agents based on the antitumor functions of quinazoline molecular compounds may improve the clinical outcomes of the affected population, particularly in patients with cancer. Topics: Animals; Antineoplastic Agents; Cell Proliferation; Humans; Neoplasms; Protein Kinase Inhibitors; Protein Kinases; Quinazolines | 2019 |
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.
The 4-aminoquinazoline core is an interesting pharmacophore and its applications in medicinal chemistry are wide spread. The core has been used for making many kinase inhibitors in past few years. Many researcher demonstrated 4-aminoquinazoline derivatives as specific kinase inhibitors, including tyrosine kinase and serine/theronine kinases. A number of anticancer drugs with 4-aminoquinazoline core are in the market, e.g. gefitinib, erlotinib, afatinib, lapatinib, decomitinib etc. 4-aminoquinazoline derivatives are applied for target specific treatment of lung, breast, colon, prostate cancers. In this review, we discussed the current development of 4-aminoquinazoline derivatives as kinase inhibitors and their uses as anticancer agents in recent years. Topics: Animals; Antineoplastic Agents; Chemistry Techniques, Synthetic; Humans; Neoplasms; Protein Kinase Inhibitors; Quinazolines | 2019 |
How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors.
Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015. Studies are still going on to find more efficient EGFR inhibitors due to the continuous emergence of resistance to the current inhibitors. Cancerous cells resist EGFR tyrosine kinase inhibitors (TKIs) through various mechanisms, the most commonly reported ones are the T790M mutation and HER2 amplification. Therefore, tackling EGFR TKIs-resistant tumors through a multi-targeting approach comprising a dual EGFR/HER2 inhibitor that is also capable of inhibiting the mutant T790M EGFR is anticipated to overcome drug resistance. In this review, we will survey the structural aspects of EGFR family and the structure-activity relationship of representative dual EGFR/HER2 inhibitors. To follow, we will discuss the structural aspects of the mutation-driven resistance and various design strategies to overcome it. Finally, we will review the SAR of exemplary irreversible dual EGFR/HER2 inhibitors that can overcome the mutation-driven resistance. Topics: Animals; Antineoplastic Agents; Drug Design; Drug Resistance, Neoplasm; ErbB Receptors; Gene Amplification; Humans; Models, Molecular; Neoplasms; Point Mutation; Protein Domains; Protein Kinase Inhibitors; Receptor, ErbB-2 | 2017 |
2 trial(s) available for pf-00299804 and Neoplasms
Article | Year |
---|---|
Phase 1 study of the pan-HER inhibitor dacomitinib plus the MEK1/2 inhibitor PD-0325901 in patients with KRAS-mutation-positive colorectal, non-small-cell lung and pancreatic cancer.
Mutations in KRAS result in a constitutively activated MAPK pathway. In KRAS-mutant tumours existing treatment options, e.g. MEK inhibition, have limited efficacy due to resistance through feedback activation of epidermal growth factor receptors (HER).. In this Phase 1 study, the pan-HER inhibitor dacomitinib was combined with the MEK1/2 inhibitor PD-0325901 in patients with KRAS-mutant colorectal, pancreatic and non-small-cell lung cancer (NSCLC). Patients received escalating oral doses of once daily dacomitinib and twice daily PD-0325901 to determine the recommended Phase 2 dose (RP2D). (Clinicaltrials.gov: NCT02039336).. Eight out of 41 evaluable patients (27 colorectal cancer, 11 NSCLC and 3 pancreatic cancer) among 8 dose levels experienced dose-limiting toxicities. The RP2D with continuous dacomitinib dosing was 15 mg of dacomitinib plus 6 mg of PD-0325901 (21 days on/7 days off), but major toxicity, including rash (85%), diarrhoea (88%) and nausea (63%), precluded long-term treatment. Therefore, other intermittent schedules were explored, which only slightly improved toxicity. Tumour regression was seen in eight patients with the longest treatment duration (median 102 days) in NSCLC.. Although preliminary signs of antitumour activity in NSCLC were seen, we do not recommend further exploration of this combination in KRAS-mutant patients due to its negative safety profile. Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Carcinoma, Non-Small-Cell Lung; Colorectal Neoplasms; Diphenylamine; ErbB Receptors; Female; Humans; Lung Neoplasms; Male; Middle Aged; Mitogen-Activated Protein Kinase Kinases; Mutation; Neoplasms; Pancreatic Neoplasms; Proto-Oncogene Proteins p21(ras); Quinazolinones | 2020 |
Phase I and pharmacokinetic study of dacomitinib (PF-00299804), an oral irreversible, small molecule inhibitor of human epidermal growth factor receptor-1, -2, and -4 tyrosine kinases, in Japanese patients with advanced solid tumors.
Dacomitinib (PF-00299804) is an oral, irreversible, small molecule inhibitor of human epidermal growth factor receptor-1, -2, and -4 tyrosine kinases.. This phase I, open-label, dose-escalation study (clinicaltrials.gov: NCT00783328) primarily evaluated the safety and tolerability of dacomitinib by dose-limiting toxicity (DLT), and determined the clinically recommended phase II dose (RP2D) in Japanese patients with advanced solid tumors. Dacomitinib was administered orally at three dose levels (15, 30, or 45 mg once daily [QD]). Patients initially received a single dose, and after 9 days of follow-up, continuously QD in 21-day cycles. Endpoints included pharmacokinetics (PK) and antitumor activity.. Thirteen patients were assigned to the three dose levels (15 mg cohort: n = 3; 30 mg cohort: n = 3; 45 mg cohort: n = 7) according to a traditional '3 + 3' design. None of the treated patients experienced a DLT. Toxicities were manageable and similar in type to those observed in other studies. PK concentration parameters increased with dose over the range evaluated, with no evidence of accumulation over time. Of 13 evaluable patients, one with NSCLC (adenocarcinoma) had a partial response and nine patients had stable disease.. Dacomitinib 45 mg QD was defined as the RP2D and demonstrated preliminary activity in Japanese patients with advanced solid tumors. Topics: Administration, Oral; Adult; Aged; Antineoplastic Agents; Asian People; Carcinoma, Non-Small-Cell Lung; Drug Administration Schedule; ErbB Receptors; Female; Humans; Male; Middle Aged; Models, Biological; Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins; Proto-Oncogene Proteins p21(ras); Quinazolinones; ras Proteins; Tumor Burden | 2012 |
1 other study(ies) available for pf-00299804 and Neoplasms
Article | Year |
---|---|
Inhibition of oncogenic epidermal growth factor receptor kinase triggers release of exosome-like extracellular vesicles and impacts their phosphoprotein and DNA content.
Cancer cells emit extracellular vesicles (EVs) containing unique molecular signatures. Here, we report that the oncogenic EGF receptor (EGFR) and its inhibitors reprogram phosphoproteomes and cargo of tumor cell-derived EVs. Thus, phosphorylated EGFR (P-EGFR) and several other receptor tyrosine kinases can be detected in EVs purified from plasma of tumor-bearing mice and from conditioned media of cultured cancer cells. Treatment of EGFR-driven tumor cells with second generation EGFR kinase inhibitors (EKIs), including CI-1033 and PF-00299804 but not with anti-EGFR antibody (Cetuximab) or etoposide, triggers a burst in emission of exosome-like EVs containing EGFR, P-EGFR, and genomic DNA (exo-gDNA). The EV release can be attenuated by treatment with inhibitors of exosome biogenesis (GW4869) and caspase pathways (ZVAD). The content of P-EGFR isoforms (Tyr-845, Tyr-1068, and Tyr-1173), ERK, and AKT varies between cells and their corresponding EVs and as a function of EKI treatment. Immunocapture experiments reveal the presence of EGFR and exo-gDNA within the same EV population following EKI treatment. These findings suggest that targeted agents may induce cancer cells to change the EV emission profiles reflective of drug-related therapeutic stress. We suggest that EV-based assays may serve as companion diagnostics for targeted anticancer agents. Topics: Animals; Antineoplastic Agents; Biomarkers; Brain Neoplasms; Cell Line, Tumor; Cetuximab; Culture Media, Conditioned; DNA; ErbB Receptors; Etoposide; Exosomes; Extracellular Vesicles; Glioma; Humans; Mice; Mice, SCID; Morpholines; Neoplasm Transplantation; Neoplasms; Phosphoproteins; Phosphorylation; Proteomics; Quinazolinones; Transfection | 2015 |