pf-00299804 and Colorectal-Neoplasms

pf-00299804 has been researched along with Colorectal-Neoplasms* in 3 studies

Trials

1 trial(s) available for pf-00299804 and Colorectal-Neoplasms

ArticleYear
Phase 1 study of the pan-HER inhibitor dacomitinib plus the MEK1/2 inhibitor PD-0325901 in patients with KRAS-mutation-positive colorectal, non-small-cell lung and pancreatic cancer.
    British journal of cancer, 2020, Volume: 122, Issue:8

    Mutations in KRAS result in a constitutively activated MAPK pathway. In KRAS-mutant tumours existing treatment options, e.g. MEK inhibition, have limited efficacy due to resistance through feedback activation of epidermal growth factor receptors (HER).. In this Phase 1 study, the pan-HER inhibitor dacomitinib was combined with the MEK1/2 inhibitor PD-0325901 in patients with KRAS-mutant colorectal, pancreatic and non-small-cell lung cancer (NSCLC). Patients received escalating oral doses of once daily dacomitinib and twice daily PD-0325901 to determine the recommended Phase 2 dose (RP2D). (Clinicaltrials.gov: NCT02039336).. Eight out of 41 evaluable patients (27 colorectal cancer, 11 NSCLC and 3 pancreatic cancer) among 8 dose levels experienced dose-limiting toxicities. The RP2D with continuous dacomitinib dosing was 15 mg of dacomitinib plus 6 mg of PD-0325901 (21 days on/7 days off), but major toxicity, including rash (85%), diarrhoea (88%) and nausea (63%), precluded long-term treatment. Therefore, other intermittent schedules were explored, which only slightly improved toxicity. Tumour regression was seen in eight patients with the longest treatment duration (median 102 days) in NSCLC.. Although preliminary signs of antitumour activity in NSCLC were seen, we do not recommend further exploration of this combination in KRAS-mutant patients due to its negative safety profile.

    Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Carcinoma, Non-Small-Cell Lung; Colorectal Neoplasms; Diphenylamine; ErbB Receptors; Female; Humans; Lung Neoplasms; Male; Middle Aged; Mitogen-Activated Protein Kinase Kinases; Mutation; Neoplasms; Pancreatic Neoplasms; Proto-Oncogene Proteins p21(ras); Quinazolinones

2020

Other Studies

2 other study(ies) available for pf-00299804 and Colorectal-Neoplasms

ArticleYear
Dacomitinib-induced diarrhea: Targeting chloride secretion with crofelemer.
    International journal of cancer, 2018, 01-15, Volume: 142, Issue:2

    Dacomitinib, an irreversible small-molecule pan-ErbB TKI, has a high incidence of diarrhea, which has been suggested to be due to chloride secretory mechanisms. Based on this hypothesis, crofelemer, an antisecretory agent may be an effective intervention. T84 monolayers were treated with 1 µM dacomitinib and 10 µM crofelemer, and mounted into Ussing chambers for electrogenic ion analysis. Crofelemer attenuated increases in chloride secretion in cells treated with dacomitinib. Albino Wistar rats (n = 48) were treated with 7.5 mg/kg dacomitinib and/or 25 mg/kg crofelemer via oral gavage for 21 days. Crofelemer significantly worsened dacomitinib-induced diarrhea (p = 0.0003), and did not attenuate weight loss (p < 0.0001). Sections of the ileum and colon were mounted into Ussing chambers, and secretory processes analyzed. This indicated that crofelemer lost its anti-secretory action in the presence of dacomitinib in this model. Mass spectrometry revealed that crofelemer did not change serum concentration of dacomitinib. Serum FITC dextran levels indicated that crofelemer was unable to attenuate dacomitinib-induced barrier dysfunction. Tight junction proteins were visualized with immunofluorescence. Qualitative analysis showed dacomitinib induced proteolysis of ZO-1 and occludin, and internalization of claudin-1, which was not attenuated by crofelemer. Detailed histopathological analysis showed that crofelemer was unable to attenuate dacomitinib-induced ileal damage. Crofelemer worsened dacomitinib-induced diarrhea, suggesting that antisecretory drug therapy may be ineffective in this setting.

    Topics: Animals; Cell Membrane Permeability; Chlorides; Colorectal Neoplasms; Diarrhea; Electrophysiology; Gastrointestinal Tract; Humans; Male; Proanthocyanidins; Quinazolinones; Rats; Rats, Wistar; Tumor Cells, Cultured; Weight Loss

2018
Dacomitinib-induced diarrhoea is associated with altered gastrointestinal permeability and disruption in ileal histology in rats.
    International journal of cancer, 2017, 06-15, Volume: 140, Issue:12

    Dacomitinib-an irreversible pan-ErbB tyrosine kinase inhibitor (TKI)-causes diarrhoea in 75% of patients. Dacomitinib-induced diarrhoea has not previously been investigated and the mechanisms remain poorly understood. The present study aimed to develop an in-vitro and in-vivo model of dacomitinib-induced diarrhoea to investigate underlying mechanisms. T84 cells were treated with 1-4 μM dacomitinib and resistance and viability were measured using transepithelial electrical resistance (TEER) and XTT assays. Rats were treated with 7.5 mg/kg dacomitinib daily via oral gavage for 7 or 21 days (n = 6/group). Weights, and diarrhoea incidence were recorded daily. Rats were administered FITC-dextran 2 hr before cull, and serum levels of FITC-dextran were measured and serum biochemistry analysis was conducted. Detailed histopathological analysis was conducted throughout the gastrointestinal tract. Gastrointestinal expression of ErbB1, ErbB2 and ErbB4 was analysed using RT-PCR. The ileum and the colon were analysed using multiplex for expression of various cytokines. T84 cells treated with dacomitinib showed no alteration in TEER or cell viability. Rats treated with dacomitinib developed severe diarrhoea, and had significantly lower weight gain. Further, dacomitinib treatment led to severe histopathological injury localised to the ileum. This damage coincided with increased levels of MCP1 in the ileum, and preferential expression of ErbB1 in this region compared to all other regions. This study showed dacomitinib induces severe ileal damage accompanied by increased MCP1 expression, and gastrointestinal permeability in rats. The histological changes were most pronounced in the ileum, which was also the region with the highest relative expression of ErbB1.

    Topics: Animals; Cell Line, Tumor; Cell Survival; Chemokine CCL2; Colorectal Neoplasms; Diarrhea; Disease Models, Animal; ErbB Receptors; Gastrointestinal Tract; Gene Expression; Humans; Ileum; Immunohistochemistry; Male; Permeability; Quinazolinones; Radioimmunoprecipitation Assay; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction

2017