pervanadate has been researched along with Carcinoma* in 2 studies
2 other study(ies) available for pervanadate and Carcinoma
Article | Year |
---|---|
PTP1B suppresses prolactin activation of Stat5 in breast cancer cells.
Basal levels of nuclear localized, tyrosine phosphorylated Stat5 are present in healthy human breast epithelia. In contrast, Stat5 phosphorylation is frequently lost during breast cancer progression, a finding that correlates with loss of histological differentiation and poor patient prognosis. Identifying the mechanisms underlying loss of Stat5 phosphorylation could provide novel targets for breast cancer therapy. Pervanadate, a general tyrosine phosphatase inhibitor, revealed marked phosphatase regulation of Stat5 activity in breast cancer cells. Lentiviral-mediated shRNA allowed specific examination of the regulatory role of five tyrosine phosphatases (PTP1B, TC-PTP, SHP1, SHP2, and VHR), previously implicated in Stat5 regulation in various systems. Enhanced and sustained prolactin-induced Stat5 tyrosine phosphorylation was observed in T47D and MCF7 breast cancer cells selectively in response to PTP1B depletion. Conversely, PTP1B overexpression suppressed prolactin-induced Stat5 tyrosine phosphorylation. Furthermore, PTP1B knockdown increased Stat5 reporter gene activity. Mechanistically, PTP1B suppression of Stat5 phosphorylation was mediated, at least in part, through inhibitory dephosphorylation of the Stat5 tyrosine kinase, Jak2. PTP1B knockdown enhanced sensitivity of T47D cells to prolactin phosphorylation of Stat5 by reducing the EC(50) from 7.2 nmol/L to 2.5 nmol/L. Immunohistochemical analyses of two independent clinical breast cancer materials revealed significant negative correlations between levels of active Stat5 and PTP1B, but not TC-PTP. Collectively, our data implicate PTP1B as an important negative regulator of Stat5 phosphorylation in invasive breast cancer. Topics: Breast Neoplasms; Carcinoma; Down-Regulation; Drug Synergism; Dual Specificity Phosphatase 3; Enzyme Inhibitors; Female; Humans; Phosphorylation; Prolactin; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Protein Tyrosine Phosphatase, Non-Receptor Type 2; Protein Tyrosine Phosphatase, Non-Receptor Type 6; STAT5 Transcription Factor; Tumor Cells, Cultured; Vanadates | 2010 |
Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase.
Understanding the regulation of Akt has been of major interest for elucidating the control of normal cellular physiology as well as malignant transformation. The paradigm for activation of Akt involves phosphatidylinositol 3-kinase-dependent membrane localization followed by activating phosphorylation of Thr-308 and Ser-473. Many of the activating signals for Akt involve the stimulation of receptor and non-receptor tyrosine kinases, and the most potent activator known is the tyrosine phosphatase inhibitor pervanadate, highlighting a possible role for tyrosine phosphorylation in the regulation of the enzyme. In this study we show that activation of Akt by pervanadate or serum is associated with tyrosine phosphorylation of Akt. In addition, in SKOV3 ovarian carcinoma cells that exhibit high basal levels of Akt activity, Akt was tyrosine-phosphorylated in the basal state, and this phosphorylation was further enhanced by both pervanadate and insulin-like growth factor-1. We have used NH(2)-terminal sequencing and phosphate release analysis to directly identify Tyr-474 as the site of tyrosine phosphorylation. Substitution of Tyr-474 with phenylalanine abolished tyrosine phosphorylation of Akt and resulted in up to 55% inhibition of Akt activation, indicating phosphorylation at Tyr-474 is required for full activation of the kinase. Our data identifies a novel regulatory mechanism for this pleiotropic enzyme that may be applicable to the AGC family of protein kinases given the conserved nature of the COOH-terminal hydrophobic motif containing Tyr-474. Topics: Animals; Carcinoma; COS Cells; Culture Media, Serum-Free; Enzyme Inhibitors; Female; Genes, Reporter; Humans; Insulin-Like Growth Factor I; Mutagenesis, Site-Directed; Ovarian Neoplasms; Peptide Mapping; Phosphatidylinositol 3-Kinases; Phosphopeptides; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Recombinant Fusion Proteins; Tumor Cells, Cultured; Tyrosine; Vanadates | 2002 |