perampanel and Infarction--Middle-Cerebral-Artery

perampanel has been researched along with Infarction--Middle-Cerebral-Artery* in 2 studies

Other Studies

2 other study(ies) available for perampanel and Infarction--Middle-Cerebral-Artery

ArticleYear
AMPA receptor modulation through sequential treatment with perampanel and aniracetam mitigates post-stroke damage in experimental model of ischemic stroke.
    Naunyn-Schmiedeberg's archives of pharmacology, 2023, Volume: 396, Issue:12

    The present study evaluates the effect of modulating α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) by inhibiting them in the acute phase and activating them in the sub-acute phase on post-stroke recovery in middle cerebral artery occlusion (MCAo) model of stroke in rats. After 90 min of MCAo, perampanel (an AMPAR antagonist, 1.5 mg/kg i.p) and aniracetam (an AMPA agonist, 50 mg/kg i.p.) were administered for different durations after MCAo. Later, after obtaining the best time point for the antagonist and the agonist treatment protocols, sequential treatment with perampanel and aniracetam were given, and the effect on neurological damage and post stroke recovery were assessed. Perampanel and aniracetam significantly protected MCAo-induced neurological damage and diminished the infarct percentage. Furthermore, treatment with these study drugs improved the motor coordination and grip strength. Sequential treatment with perampanel and aniracetam reduced the infarct percentage as assessed by MRI. Moreover, these compounds diminished the inflammation via reducing the levels of pro-inflammatory cytokines (TNF-α, IL-1β) and increasing the levels of anti-inflammatory cytokine (IL-10) along with reductions in GFAP expression. Moreover, the neuroprotective markers (BDNF and TrkB) were found to be significantly increased. Levels of apoptotic markers (Bax, cleaved-caspase-3; Bcl2 and TUNEL positive cells) and neuronal damage (MAP-2) were normalized with the AMPA antagonist and agonist treatment. Expressions of GluR1 and GluR2 subunits of AMPAR were significantly enhanced with sequential treatment. The present study thus showed that modulation of AMPAR improves neurobehavioral deficits and reduces the infarct percentage through anti-inflammatory, neuroprotective and anti-apoptotic effects.

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anti-Inflammatory Agents; Infarction, Middle Cerebral Artery; Ischemic Stroke; Models, Theoretical; Neuroprotective Agents; Rats; Receptors, AMPA; Stroke

2023
AMPA Receptor Antagonist Perampanel Ameliorates Post-Stroke Functional and Cognitive Impairments.
    Neuroscience, 2018, 08-21, Volume: 386

    Perampanel (PER), a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antagonist, clinically used for seizure control, has been reported to exert neuroprotective effects in experimental models of neurodegenerative diseases. However, few studies have investigated the therapeutic effects of PER in brain injury including stroke. Our aim was to investigate the neuroprotective potential of PER using a rat transient middle cerebral artery occlusion (MCAO) model. Sprague-Dawley rats underwent 90-min MCAO followed by intraperitoneal PER administration at a dose of 1.5 mg/kg. Infarct volumes, neurological deficits, and immunological analyses were performed at 7 days after MCAO. PER significantly reduced infarct volumes (p < 0.05) and improved motor function (p < 0.05) compared with vehicle. Immunological analysis showed that PER significantly inhibited microglial activation, pro-inflammatory cytokine expression, and oxidative stress compared with vehicle. Moreover, PER suppressed neurodegeneration in the cortical ischemic boundary zone, via downregulation of Bcl-2-associated x and upregulation of Bcl-extra-large with Akt activation. In addition, post-stroke secondary neuronal damage and cognitive impairments, using the Y-maze test, were assessed 30 days after MCAO. PER significantly improved spatial working memory, which was accompanied by hippocampal CA1 neuronal loss and cortical thinning, compared with vehicle. These results indicate that PER attenuates infarct volumes and motor function deficits possibly through its anti-inflammatory, antioxidant, and anti-apoptotic activities, mediated via activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathways in the acute ischemic phase, and further ameliorates post-stroke cognitive impairments via the suppression of secondary neuronal damage in the chronic ischemic phase.

    Topics: Animals; Cognitive Dysfunction; Excitatory Amino Acid Antagonists; Infarction, Middle Cerebral Artery; Male; Maze Learning; Nitriles; Pyridones; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Recovery of Function; Stroke

2018