peramivir has been researched along with Body-Weight* in 6 studies
6 other study(ies) available for peramivir and Body-Weight
Article | Year |
---|---|
Efficacy of repeated intravenous administration of peramivir against highly pathogenic avian influenza A (H5N1) virus in cynomolgus macaques.
Highly pathogenic avian influenza A (H5N1) viruses cause severe and often fatal disease in humans. We evaluated the efficacy of repeated intravenous dosing of the neuraminidase inhibitor peramivir against highly pathogenic avian influenza virus A/Vietnam/UT3040/2004 (H5N1) infection in cynomolgus macaques. Repeated dosing of peramivir (30 mg/kg/day once a day for 5 days) starting immediately after infection significantly reduced viral titers in the upper respiratory tract, body weight loss, and cytokine production and resulted in a significant body temperature reduction in infected macaques compared with that of macaques administered a vehicle (P < 0.05). Repeated administration of peramivir starting at 24 h after infection also resulted in a reduction in viral titers and a reduction in the period of virus detection in the upper respiratory tract, although the body temperature change was not statistically significant. The macaque model used in the present study demonstrated that inhibition of viral replication at an early time point after infection by repeated intravenous treatment with peramivir is critical for reduction of the production of cytokines, i.e., interleukin-6 (IL-6), tumor necrosis factor α, gamma interferon, monocyte chemotactic protein 1, and IL-12p40, resulting in amelioration of symptoms caused by highly pathogenic avian influenza virus infection. Topics: Acids, Carbocyclic; Administration, Intravenous; Animals; Antiviral Agents; Body Temperature; Body Weight; Chemokine CCL2; Cyclopentanes; Drug Administration Schedule; Female; Guanidines; Influenza A Virus, H5N1 Subtype; Interferon-gamma; Interleukin-12 Subunit p40; Interleukin-6; Macaca fascicularis; Orthomyxoviridae Infections; Time Factors; Treatment Outcome; Tumor Necrosis Factor-alpha; Virulence; Virus Replication | 2014 |
Combination effects of peramivir and favipiravir against oseltamivir-resistant 2009 pandemic influenza A(H1N1) infection in mice.
Antiviral drugs are being used for therapeutic purposes against influenza illness in humans. However, antiviral-resistant variants often nullify the effectiveness of antivirals. Combined medications, as seen in the treatment of cancers and other infectious diseases, have been suggested as an option for the control of antiviral-resistant influenza viruses. Here, we evaluated the therapeutic value of combination therapy against oseltamivir-resistant 2009 pandemic influenza H1N1 virus infection in DBA/2 mice. Mice were treated for five days with favipiravir and peramivir starting 4 hours after lethal challenge. Compared with either monotherapy, combination therapy saved more mice from viral lethality and resulted in increased antiviral efficacy in the lungs of infected mice. Furthermore, the synergism between the two antivirals, which was consistent with the survival outcomes of combination therapy, indicated that favipiravir could serve as a critical agent of combination therapy for the control of oseltamivir-resistant strains. Our results provide new insight into the feasibility of favipiravir in combination therapy against oseltamivir-resistant influenza virus infection. Topics: Acids, Carbocyclic; Amides; Animals; Antiviral Agents; Body Weight; Cyclopentanes; Dogs; Drug Resistance, Viral; Drug Synergism; Drug Therapy, Combination; Female; Guanidines; Influenza A Virus, H1N1 Subtype; Lung; Madin Darby Canine Kidney Cells; Mice; Mice, Inbred DBA; Orthomyxoviridae Infections; Oseltamivir; Pyrazines; Survival Rate | 2014 |
Efficacy of repeated intravenous injection of peramivir against influenza A (H1N1) 2009 virus infection in immunosuppressed mice.
The efficacy of intravenous peramivir against influenza A (H1N1) 2009 virus infection was evaluated in mice in which the immune system was suppressed by cyclophosphamide (CP) treatment. The mortality rate of the vehicle control group was 100%, and the mice lost 20% of their body weight on average by day 13 postinfection (p.i.). Repeated administration of peramivir (40 mg/kg of body weight once a day, given intravenously for 20 days), starting at 1 h p.i., significantly reduced mortality, body weight loss, viral titers, and cytokine production in infected mice compared with results for administration of vehicle (P < 0.01). In addition, repeated administration of peramivir, starting at 24 h, 48 h, or 72 h p.i., also resulted in increases in survival rates and reduction of viral titers in the lungs (P < 0.01). The mean days to death (MDD) of the vehicle group was 14.5 days, while in the groups treated with peramivir starting at 24 h, 48 h, and 72 h p.i., the MDDs were >23.0, 20.9, and 21.8 days, respectively. In comparison, repeated administration of oseltamivir phosphate (5 mg/kg twice a day, given orally for 20 days), starting at 24 h, 48 h, and 72 h p.i., also significantly prevented body weight loss, whereas no significant differences in mortality rates and viral titers in the lungs were observed compared with results for the vehicle group. These data indicated that repeated administration of peramivir was effective in promoting the survival and reducing virus replication in immunosuppressed mice infected with influenza A (H1N1) 2009 virus. Topics: Acids, Carbocyclic; Animals; Antiviral Agents; Body Weight; Cyclopentanes; Cyclophosphamide; Drug Administration Schedule; Female; Guanidines; Immunosuppressive Agents; Influenza A Virus, H1N1 Subtype; Injections, Intravenous; Lung; Mice; Mice, Inbred BALB C; Orthomyxoviridae Infections; Oseltamivir; Phosphorous Acids; Survival Analysis; Treatment Outcome | 2013 |
A single intramuscular injection of neuraminidase inhibitor peramivir demonstrates antiviral activity against novel pandemic A/California/04/2009 (H1N1) influenza virus infection in mice.
New and emerging influenza virus strains, such as the pandemic influenza A (H1N1) virus require constant vigilance for antiviral drug sensitivity and resistance. Efficacy of intramuscularly (IM) administered neuraminidase (NA) inhibitor, peramivir, was evaluated in mice infected with recently isolated pandemic A/California/04/2009 (H1N1, swine origin, mouse adapted) influenza virus. A single IM injection of peramivir (four dose groups), given 1h prior to inoculation, significantly reduced weight loss (p < 0.001) and mortality (p < 0.05) in mice infected with LD90 dose of pandemic A/California/04/2009 (H1N1) influenza virus compared to vehicle group. There was 20% survival in the vehicle-treated group, whereas in the peramivir-treated groups, survival increased in a dose-dependent manner with 60, 60, 90 and 100% survivors for the 1, 3, 10, and 30 mg/kg doses, respectively. Weight loss on day 4 in the vehicle-treated group was 3.4 gm, and in the peramivir-treated groups was 2.1, 1.5, 1.8 and 1.8 g for the 1, 3, 10 and 30 mg/kg dose groups, respectively. In the treatment model, peramivir given 24h after infection as a single IM injection at 50mg/kg dose, showed significant protection against lethality and weight loss. There was 13% survival in the vehicle-treated group while in the peramivir-treated group at 24, 48, and 72 h post infection, survival was 100, 40, and 50%, respectively. Survival in the oseltamivir groups (10 mg/kg/d twice a day, orally for 5 days) was 90, 30 and 20% at 24, 48 and 72 h, respectively. These data demonstrate efficacy of parenterally administered peramivir against the recently isolated pandemic influenza virus in murine infection models. Topics: Acids, Carbocyclic; Animals; Antiviral Agents; Body Weight; Cyclopentanes; Disease Models, Animal; Female; Guanidines; Influenza A Virus, H1N1 Subtype; Injections, Intramuscular; Mice; Mice, Inbred BALB C; Orthomyxoviridae Infections; Rodent Diseases; Survival Analysis | 2011 |
Evaluation of methyl inosine monophosphate (MIMP) and peramivir activities in a murine model of lethal influenza A virus infection.
An inbred murine model (BALB/c) was utilized to assess the protective effect of the immunomodulator methyl inosine 5'-monophosphate (MIMP) against infection with influenza A/PR/8/34 (H1N1) virus. Contrary to the data reported for outbred mice (NMRI) infected with the aerosolized virus (Masihi, Hadden, 2003. J. Int. Immunopharmacol. 3, 1205-1215), there were no improvements in the outcomes of infection in the inbred animals treated with MIMP intranasally 1 day before the challenge and/or orally after the challenge for 5 days (up to 10 mg/kg/day). Nevertheless, complete protection against lethality was afforded by the treatment with the neuraminidase inhibitor peramivir given once daily for 5 days after the challenge (10 mg/kg/day). We speculate that the rapid progression of the disease in inbred mice caused by the intranasal challenge may render the MIMP-treatment ineffective. Our results emphasize the need for careful consideration of murine strains and routes of virus challenge in the design of experiments utilizing lethal influenza virus infection. Topics: Acids, Carbocyclic; Age Factors; Animals; Antiviral Agents; Body Weight; Cyclopentanes; Disease Models, Animal; Female; Guanidines; Influenza A Virus, H1N1 Subtype; Inosine Monophosphate; Mice; Mice, Inbred BALB C; Orthomyxoviridae Infections | 2006 |
Comparison of efficacies of RWJ-270201, zanamivir, and oseltamivir against H5N1, H9N2, and other avian influenza viruses.
The orally administered neuraminidase (NA) inhibitor RWJ-270201 was tested in parallel with zanamivir and oseltamivir against a panel of avian influenza viruses for inhibition of NA activity and replication in tissue culture. The agents were then tested for protection of mice against lethal H5N1 and H9N2 virus infection. In vitro, RWJ-270201 was highly effective against all nine NA subtypes. NA inhibition by RWJ-270201 (50% inhibitory concentration, 0.9 to 4.3 nM) was superior to that by zanamivir and oseltamivir carboxylate. RWJ-270201 inhibited the replication of avian influenza viruses of both Eurasian and American lineages in MDCK cells (50% effective concentration, 0.5 to 11.8 microM). Mice given 10 mg of RWJ-270201 per kg of body weight per day were completely protected against lethal challenge with influenza A/Hong Kong/156/97 (H5N1) and A/quail/Hong Kong/G1/97 (H9N2) viruses. Both RWJ-270201 and oseltamivir significantly reduced virus titers in mouse lungs at daily dosages of 1.0 and 10 mg/kg and prevented the spread of virus to the brain. When treatment began 48 h after exposure to H5N1 virus, 10 mg of RWJ-270201/kg/day protected 50% of mice from death. These results suggest that RWJ-270201 is at least as effective as either zanamivir or oseltamivir against avian influenza viruses and may be of potential clinical use for treatment of emerging influenza viruses that may be transmitted from birds to humans. Topics: Acetamides; Acids, Carbocyclic; Animals; Antiviral Agents; Body Weight; Brain; Cyclopentanes; Disease Models, Animal; Dogs; Female; Guanidines; Influenza A virus; Influenza A Virus, H5N1 Subtype; Influenza A Virus, H9N2 Subtype; Lung; Mice; Mice, Inbred BALB C; Neuraminidase; Orthomyxoviridae Infections; Oseltamivir; Pyrans; Sialic Acids; Treatment Outcome; Virus Replication; Zanamivir | 2001 |