peptide-yy and Hypogonadism

peptide-yy has been researched along with Hypogonadism* in 2 studies

Reviews

1 review(s) available for peptide-yy and Hypogonadism

ArticleYear
Anorexia nervosa and osteoporosis.
    Reviews in endocrine & metabolic disorders, 2006, Volume: 7, Issue:1-2

    Anorexia nervosa (AN), a condition of severe undernutrition, is associated with low bone mineral density (BMD) in adults and adolescents. Whereas adult women with AN have an uncoupling of bone turnover markers with increased bone resorption and decreased bone formation markers, adolescents with AN have decreased bone turnover overall. Possible contributors to low BMD in AN include hypoestrogenism and hypoandrogenism, undernutrition with decreased lean body mass, and hypercortisolemia. IGF-I, a known bone trophic factor, is reduced despite elevated growth hormone (GH) levels, leading to an acquired GH resistant state. Elevated ghrelin and peptide YY levels may also contribute to impaired bone metabolism. Weight recovery is associated with recovery of BMD but this is often partial, and long-term and sustained weight recovery may be necessary before significant improvements are observed. Anti-resorptive therapies have been studied in AN with conflicting results. Oral estrogen does not increase BMD or prevent bone loss in AN. The combination of bone anabolic and anti-resorptive therapy (rhIGF-I with oral estrogen), however, did result in a significant increase in BMD in a study of adult women with AN. A better understanding of the pathophysiology of low BMD in AN, and development of effective therapeutic strategies is critical. This is particularly so for adolescents, who are in the process of accruing peak bone mass, and in whom a failure to attain peak bone mass may occur in AN in addition to loss of established bone.

    Topics: Androgens; Anorexia Nervosa; Bone Density Conservation Agents; Calcium; Diphosphonates; Eating; Estrogen Replacement Therapy; Ghrelin; Humans; Hypogonadism; Insulin-Like Growth Factor I; Leptin; Malnutrition; Motor Activity; Osteoporosis; Peptide Hormones; Peptide YY; Recombinant Proteins; Vitamin D

2006

Other Studies

1 other study(ies) available for peptide-yy and Hypogonadism

ArticleYear
Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism.
    Molecular and cellular endocrinology, 2001, Dec-20, Volume: 185, Issue:1-2

    Neuropeptide Y (NPY) is involved in the central regulation of appetite, sexual behavior, and reproductive function. We have previously shown that chronic infusion of NPY into the lateral ventricle of normal rats produced an obesity syndrome characterized by hyperphagia, hyperinsulinism and collapse of reproductive function. We further demonstrated that acute inhibition of LH secretion in castrated rats was preferentially mediated by the NPY receptor subtype 5 (Y(5)). In the present study, the effects of chronic, central infusion of NPY, or the mixed Y2-Y5 agonist PYY(3-36), were evaluated both in normal male C57BL/6J mice and Sprague-Dawley rats. After a 7-day infusion to male mice, both NPY and PYY(3-36) at 5 nmol per day, induced marked hyperphagia leading to significant increases in body and fat pad weights. Furthermore, both compounds markedly reduced several markers of the reproductive axis. In the rat study, PYY(3-36) was more active than NPY to inhibit the pituitary-testicular axis, confirming the importance of the Y5 subtype for such effects. In the mouse, chronic NPY infusion induced a sustained increase in corticosterone and insulin secretion. Plasma leptin levels were also markedly increased possibly explaining the observed reduction in gene expression for hypothalamic NPY. Gene expression for hypothalamic POMC was reduced in the NPY- or PYY(3-36)-infused mice, suggesting that NPY exacerbated food intake by both acting through its own receptor(s), and reducing the satiety signal driven by the POMC-derived alpha-MSH. The present study in the mouse suggests in analogy with available rat data, that constant exposure to elevated NPY in the hypothalamic area unabatedly enhances food intake leading to an obesity syndrome including increased adiposity, insulin resistance, hypercorticism, and hypogonadism, reminiscent of the phenotype of the ob/ob mouse, that displays elevated hypothalamic NPY secondary to lack of leptin negative feedback action.

    Topics: Animals; Hyperphagia; Hypogonadism; Insulin Resistance; Lateral Ventricles; Leptin; Male; Mice; Mice, Inbred C57BL; Neuropeptide Y; Obesity; Peptide Fragments; Peptide YY; Rats; Rats, Sprague-Dawley; Syndrome

2001