pep005 and Keloid

pep005 has been researched along with Keloid* in 2 studies

Other Studies

2 other study(ies) available for pep005 and Keloid

ArticleYear
miR-34 modulates apoptotic gene expression in Ingenol mebutate treated keloid fibroblasts.
    Molecular medicine reports, 2018, Volume: 17, Issue:5

    Keloids are benign skin tumors that develop in individuals who have a positive family history of keloid disorders. Keloids are characterized by a deregulated wound‑healing process, atypical fibroblasts with extreme deposition of extracellular matrix components, particularly collagen, increased cell proliferation and associated failure of apoptosis. Recently ingenol‑mebutate has been used as a novel agent with anti‑proliferative activity on human keloids as an alternative treatment option in patients, once conventional therapies have failed. We hypothesized that microRNAs (miR/miRNA) may be involved in the balance between lesion formation and repair. A comprehensive understanding of the molecular mechanism underlying the Ingenol‑mebutate response in keloid fibroblast following Ingenol‑mebutate exposure has been established previously. Therefore, the present study analyzed changes in miRNAs and apoptotic gene regulation in Ingenol‑mebutate treated keloid fibroblast, by reverse transcription‑quantitative polymerase chain reaction and a DNA fragmentation assay. The range of upregulated miRNAs and downregulated genes encoding cell death appeared to be associated with the degree of the morphological alterations in Ingenol‑mebutate treated keloids. In particular, the upregulation of miR‑34a was detected in keloid fibroblasts during and following Ingenol‑mebutate exposure. Keloid fibroblasts that overexpressed miR‑34a showed differential expression of genes involved in the apoptotic signaling pathway such as p53. In conclusion, the Ingenol‑mebutate treatment used here was effective in reducing keloid fibroblast growth in cell culture experiments and the expression of particular miRNAs modulated the pro‑apoptotic gene expression following Ingenol-mebutate treatment.

    Topics: Apoptosis; Cells, Cultured; Diterpenes; DNA Fragmentation; Fibroblasts; Gene Expression Regulation; Humans; Keloid; MicroRNAs

2018
Ingenol mebutate treatment in keloids.
    BMC research notes, 2015, Sep-22, Volume: 8

    Ingenol-mebutate has been used for the treatment of actinic keratosis. It has been shown that ingenol-mebutate inhibits the growth of cancer cells or induces tumor cell death through pro-apoptotic effects. Keloids are benign skin tumours and are the effect of a deregulated wound-healing process in genetically predisposed patients. Increased cell proliferation, which accounts for the progressive and hypertrophic nature of keloids, correlates with the failure of apoptosis and plays a role in the process of pathological scarring. Keloid cells show a mutated p53 gene resulting in functionally inactive p53 protein which cannot control genomic integrity. They tend to escape from apoptosis which leads to keloid development by means of accumulation of continuously proliferating cells. Currently, the treatment of keloids remains a challenge for high recurrence rates. However, the design and the development of pro-apoptotic therapeutic strategies would be beneficial to keloids treatment.. A 55-year-old caucasian woman presented recurrent keloids on a presternal scar. Standard surgical intervention was used to treat the scar. However, this was unsuccessful and a year later the patient sought treatment again, but only by alternative means as the patient refused further surgical intervention. Consequently, based on past research and experience, the authors attempted to treat these lesions with ingenol mebutate gel, due to the pro-apoptotic effects.. After 1 month, there was a clinical resolution of lesions, with a slightly squamous, post-inflammatory erythema. A cutaneous biopsy proved the absence of residual keloids and deregulated expression of molecular markers. The last follow-up of the patient, 1 year after treatment, showed that the patient was still free of keloids recurrence.

    Topics: Diterpenes; Female; Humans; Keloid; Middle Aged

2015