peoniflorin and Stroke

peoniflorin has been researched along with Stroke* in 4 studies

Other Studies

4 other study(ies) available for peoniflorin and Stroke

ArticleYear
Combination of paeoniflorin and calycosin-7-glucoside alleviates ischaemic stroke injury via the PI3K/AKT signalling pathway.
    Pharmaceutical biology, 2022, Volume: 60, Issue:1

    Paeoniflorin (PF) and calycosin-7-glucoside (CG,. To investigate the synergistic effects of PF + CG on ischaemia/reperfusion injury. Male Sprague-Dawley rats were subjected to the middle cerebral artery occlusion/reperfusion (MCAO/R). After MCAO/R for 24 h, rats were randomly subdivided into 5 groups: sham, model (MCAO/R), study treatment (PF + CG, 40 + 20 mg/kg), LY294002 (20 mg/kg), and study treatment + LY294002. Males were given via intragastric administration; the duration of the. PF + CG significantly reduced neurobehavioral outcomes (21%), cerebral infarct volume (44%), brain edoema (1.6%) compared with the MCAO/R group. Moreover, PF + CG increased p-PI3K/PI3K (4.69%, 7.4%), p-AKT/AKT (6.25%, 60.6%) and Bcl-2/BAX (33%, 49%) expression. PF + CG showed a synergistic protective effect against ischaemic brain injury, potentially being a future treatment for ischaemic stroke.

    Topics: Animals; Brain Ischemia; Glucosides; Glycogen Synthase Kinase 3 beta; Infarction, Middle Cerebral Artery; Ischemic Stroke; Isoflavones; Male; Monoterpenes; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury; Stroke

2022
Antidepressant-like effects of paeoniflorin on post-stroke depression in a rat model.
    Neurological research, 2019, Volume: 41, Issue:5

    Post-stroke depression (PSD) is one of the most prevalent emotional disorders after stroke and often results in poor outcomes. However, the underlying physiopathologic mechanism and effective treatment of PSD remain poorly elucidated.. To investigate whether paeoniflorin has antidepressant-like activity in a rat model of PSD.. Rats were randomly divided into four groups: sham-operated control (Sham), PSD, paeoniflorin (with PSD) and fluoxetine group(with PSD). PSD was developed by the right middle cerebral artery occlusion followed 21 days chronic unpredictable mild stress combined (CUMS) with raised alone. Tests of sucrose preference and open field were used to assess the depression-like behavior. Neurological function was evaluated by neurological deficit score and beam balance test. Expression of phosphorylated CREB (p-CREB) and brain-derived neurotrophic factor (BDNF) in the CA1 region of the hippocampal complex was evaluated by western blot and immunofluorescence.. Te depressive-like behaviors markedly improved after paeoniflorin and fluoxetine treatment. Furthermore, paeoniflorin treatment significantly increased BDNF and p-CREB expression in the CA1 region.. Observed results suggested that paeoniflorin could ameliorate the symptoms and improve the functional capability of PSD rats, similar to the effect of fluoxetine.. PSD: post-stroke depression; CUMS: chronic unpredictable mild stress stimulation; MCAO: middle cerebral artery occlusion; OFT: open field test; SPT: sucrose preference test, NDS: neurological deficit score, BBT: beam balance test; BDNF: brain-derived neurotrophic factor protein; p-CREB: phosphorylated Cyclic-AMP responsive element binding protein.

    Topics: Animals; Antidepressive Agents; Brain-Derived Neurotrophic Factor; CA1 Region, Hippocampal; Cyclic AMP Response Element-Binding Protein; Depressive Disorder; Disease Models, Animal; Fluoxetine; Glucosides; Male; Monoterpenes; Random Allocation; Rats, Sprague-Dawley; Stress, Psychological; Stroke

2019
Buyang Huanwu Decoction ameliorates ischemic stroke by modulating multiple targets with multiple components: In vitro evidences.
    Chinese journal of natural medicines, 2018, Volume: 16, Issue:3

    Buyang Huanwu Decoction (BYHWD) is a well-known traditional Chinese medicine prescription which is used to treat ischaemic stroke and stroke-induced disabilities. However, the exact mechanism underlying BYHWD's amelioration of ischaemic stroke and its effective constituents remain unclear. The present study aimed to identify the effective constituents of BYHWD and to further explore its action mechanisms in the amelioration of ischaemic stroke by testing the activities of 15 absorbable chemical constituents of BYHWD with the same methods under the same conditions. The following actions of these 15 compounds were revealed: 1) Ferulic acid, calycosin, formononetin, astrapterocarpan-3-O-β-D-glucoside, paeonol, calycosin-7-O-β-D-glucoside, astraisoflavan-7-O-β-D-glucoside, ligustrazine, and propyl gallate significantly suppressed concanavalin A (Con A)-induced T lymphocyte proliferation; 2) Propyl gallate, calycosin-7-O-β-D-glucoside, paeonol, and ferulic acid markedly inhibited LPS-induced apoptosis in RAW264.7 cells; 3) Propyl gallate and formononetin significantly inhibited LPS-induced NO release; 4) Hydroxysafflor yellow A and inosine protected PC12 cells against the injuries caused by glutamate; and 5) Formononetin, astragaloside IV, astraisoflavan-7-O-β-D-glucoside, inosine, paeoniflorin, ononin, paeonol, propyl gallate, ligustrazine, and ferulic acid significantly suppressed the constriction of the thoracic aorta induced by KCl in rats. In conclusion, the results from the present study suggest that BYHWD exerts its ischaemic stroke ameliorating activities by modulating multiple targets with multiple components.

    Topics: Animals; Apoptosis; Brain Ischemia; Drugs, Chinese Herbal; Glucosides; Isoflavones; Male; Mice; Mice, Inbred BALB C; Monoterpenes; PC12 Cells; Rats; Rats, Sprague-Dawley; RAW 264.7 Cells; Saponins; Stroke; Triterpenes

2018
Pharmacokinetic Comparison of Scutellarin and Paeoniflorin in Sham-Operated and Middle Cerebral Artery Occlusion Ischemia and Reperfusion Injury Rats after Intravenous Administration of Xin-Shao Formula.
    Molecules (Basel, Switzerland), 2016, Sep-07, Volume: 21, Issue:9

    Xin-Shao formula is a folk remedy widely used in China to prevent and cure stroke. Cerebral ischemic reperfusion (I/R) injury often takes place during the treatment of stroke. Information about the pharmacokinetic behavior of the remedy under cerebral I/R injury conditions is lacking. The present study aimed to compare the pharmacokinetic properties of scutellarin and paeoniflorin, two major bioactive components of Xin-Shao formula, under physiological state in cerebral I/R injury rats. Neurobehavioral dysfunction was evaluated and cerebral infarcted volume was measured in middle cerebral artery occlusion I/R injury (MCAO) rats. Plasma samples were collected at various time points after a single dose (intravenous, i.v.) of Xin-Shao formula. The levels of plasma scutellarin and paeoniflorin at the designed time points were determined by a UPLC-MS/MS method, and drug concentration versus time plots were constructed to estimate pharmacokinetic parameters. Increase in terminal elimination half-life (t1/2z) and mean residence time (MRT(0-t)) of scutellarin as well as elevation in area under the plasma drug concentration-time curve from 0 h to the terminal time point (AUC(0-t)) and maximum plasma drug concentration (Cmax) of paeoniflorin, along with decreased clearance of paeoniflorin and scutellarin as well as reduced apparent volume of distribution (Vz) of paeoniflorin, were observed in MCAO rats, compared with those in sham-operated animals. The elimination of scutellarin and paeoniflorin were reduced in cerebral I/R injury reduced rats.

    Topics: Animals; Apigenin; Disease Models, Animal; Glucosides; Glucuronates; Infarction, Middle Cerebral Artery; Male; Medicine, Chinese Traditional; Monoterpenes; Plant Extracts; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stroke

2016