peoniflorin has been researched along with Pulmonary-Fibrosis* in 2 studies
2 other study(ies) available for peoniflorin and Pulmonary-Fibrosis
Article | Year |
---|---|
Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway.
Paeoniflorin has shown to attenuate bleomycin-induced pulmonary fibrosis (PF) in mice. Because the epithelial-mesenchymal transition (EMT) in type 2 lung endothelial cells contributes to excessive fibroblasts and myofibroblasts during multiple fibrosis of tissues, we investigated the effects of paeoniflorin on TGF-β mediated pulmonary EMT in bleomycin-induced PF mice.. PF was induced in mice by intratracheal instillation of bleomycin (5 mg/kg). The mice were orally treated with paeoniflorin or prednisone for 21 d. After the mice were sacrificed, lung tissues were collected for analysis. An in vitro EMT model was established in alveolar epithelial cells (A549 cells) incubated with TGF-β1 (2 ng/mL). EMT identification and the expression of related proteins were performed using immunohistochemistry, transwell assay, ELISA, Western blot and RT-qPCR.. In PF mice, paeoniflorin (50, 100 mg·kg(-1)·d(-1)) or prednisone (6 mg·kg(-1)·d(-1)) significantly decreased the expression of FSP-1 and α-SMA, and increased the expression of E-cadherin in lung tissues. In A549 cells, TGF-β1 stimulation induced EMT, as shown by the changes in cell morphology, the increased cell migration, and the increased vimentin and α-SMA expression as well as type I and type III collagen levels, and by the decreased E-cadherin expression. In contrast, effects of paeoniflorin on EMT disappeared when the A549 cells were pretreated with TGF-β1 for 24 h. TGF-β1 stimulation markedly increased the expression of Snail and activated Smad2/3, Akt, ERK, JNK and p38 MAPK in A549 cells. Co-incubation with paeoniflorin (1-30 μmol/L) dose-dependently attenuated TGF-β1-induced expression of Snail and activation of Smad2/3, but slightly affected TGF-β1-induced activation of Akt, ERK, JNK and p38 MAPK. Moreover, paeoniflorin markedly increased Smad7 level, and decreased ALK5 level in A549 cells.. Paeoniflorin suppresses the early stages of TGF-β mediated EMT in alveolar epithelial cells, likely by decreasing the expression of the transcription factors Snail via a Smad-dependent pathway involving the up-regulation of Smad7. Topics: A549 Cells; Animals; Anti-Inflammatory Agents, Non-Steroidal; Bleomycin; Cell Survival; Epithelial Cells; Epithelial-Mesenchymal Transition; Glucosides; Humans; Lung; Male; Mice; Mice, Inbred ICR; Monoterpenes; Paeonia; Pulmonary Fibrosis; Signal Transduction; Smad Proteins; Transforming Growth Factor beta | 2016 |
Paeoniflorin, the main active constituent of Paeonia lactiflora roots, attenuates bleomycin-induced pulmonary fibrosis in mice by suppressing the synthesis of type I collagen.
In the theory of traditional Chinese medicine, pulmonary fibrosis (PF) belongs to pulmonary arthralgia, which means blood stasis in lung tissue. The roots of Paeonia lactiflora Pall are usually used to relieve the symptoms of this disease by promoting blood circulation and removing blood stasis. Paeoniflorin, the main active ingredient of P. lactiflora, may have anti-PF potential.. This study aimed to investigate the effects and underlying mechanisms of paeoniflorin on bleomycin (BLM)-induced PF in mice.. The PF model was established in mice by an intratracheal instillation of BLM. Paeoniflorin (25, 50, 100mg/kg) and prednisone (6mg/kg), as a positive control, were orally administered for consecutive 21 days. Histopathological changes were evaluated by hematoxylin and eosin stain and Masson's trichrome stain. The content of hydroxyproline was detected by using kits. The contents of type I collagen, TGF-β1 and IFN-γ were detected by ELISA. The levels of α-SMA, Smad4, Smad7 and the phosphorylations of Smad2/3 were detected by western blot. The mRNA expressions of MMP-1 and TIMP-1 were detected by RT-PCR.. In mice treated with BLM, paeoniflorin (50mg/kg) significantly prolonged the survival periods, attenuated infiltration of inflammatory cells, interstitial fibrosis, and deposition of extracellular matrix in lung tissues. It also decreased the contents of hydroxyproline (a marker of collagens), type I collagen and α-SMA (an indicator of myofibroblasts) in lung tissues of mice. Paeoniflorin down-regulated the expressions of TGF-β1, Smad4 and the phosphorylations of Smad2/3, while up-regulated the expression of Smad7 in lung tissues. Moreover, paeoniflorin increased the content of IFN-γ. But, it only slightly affected mRNA expressions of MMP-1 and TIMP-1 in lung tissues of mice.. Paeoniflorin attenuates PF by suppressing type I collagen synthesis via inhibiting the activation of TGF-β/Smad pathway and increasing the expression of IFN-γ. Topics: Animals; Benzoates; Bleomycin; Bridged-Ring Compounds; Collagen Type I; Disease Models, Animal; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Glucosides; Lung; Male; Mice; Mice, Inbred ICR; Molecular Structure; Monoterpenes; Paeonia; Plant Roots; Pulmonary Fibrosis | 2013 |