peoniflorin has been researched along with Cardiomegaly* in 2 studies
2 other study(ies) available for peoniflorin and Cardiomegaly
Article | Year |
---|---|
Paeoniflorin alleviates AngII-induced cardiac hypertrophy in H9c2 cells by regulating oxidative stress and Nrf2 signaling pathway.
Cardiac hypertrophy is frequently associated with ventricular dysfunction and heart failure. Paeoniflorin, has been widely used to treat cardiovascular dysfunction-related diseases. However, the underlying mechanism has been unclear. Here, we investigated the potential inhibitory effects and mechanism of paeoniflorin on oxidative stress of cardiac hypertrophy induced by angiotensin II (AngII) in vitro. Using MTS assay, qRT-PCR, WGA staining assay, and western blot, different dosages (50-400 μM) of paeoniflorin were utilized to examine the antihypertrophy effects on H9c2 cells. Western blot examination revealed the presence of apoptosis-related proteins Bax, Bcl2, and Cytc, antioxidative stress-related proteins Nrf2, HO-1, SOD, and CAT, and mitophagy-related proteins PINK1 and Parkin. qRT-PCR was used to detect the mRNA expression of Bax, Bcl2, Nrf2, and HO-1. TUNEL, caspase3/9 enzyme viability, and MDA, T-AOC, and superoxide levels were all evaluated using commercial kits.The fluorescent probes DCFH-DA and JC-1 were employed to measure cellular ROS and MMP levels. Nrf2 siRNA was utilized to investigate Nrf2's role in paeoniflorin-treated cardiac hypertrophy. Paeoniflorin dramatically reduced cell section area (CSA) and hypertrophic marker (ANP, BNP) expression while inhibiting oxidative stress by modulating ROS and MDA, CAT, SOD, and T-AOC levels. Furthermore, in AngII-induced cardiomyocyte hypertrophy, paeoniflorin restores H9c2 apoptosis by restoring Bax, Bcl-2 Cyt-C, Caspase 3, and Caspase 9 levels. Paeoniflorin also restored Nrf2/HO-1 and PINK1/Parkin expression, and its anti-AngII activities were mediated by Nrf2, which was regulated by Nrf2 knockdown. In conclusion, Our data confirm that paeoniflorin alleviates cardiac hypertrophy through modulating oxidative stress and Nrf2 signaling pathway in vitro. Topics: Angiotensin II; Animals; Apoptosis; Apoptosis Regulatory Proteins; bcl-2-Associated X Protein; Cardiomegaly; Myocytes, Cardiac; NF-E2-Related Factor 2; Oxidative Stress; Protein Kinases; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Superoxide Dismutase | 2023 |
Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways.
Cardiac remodeling is a key determinant in the clinical course and outcome of heart failure and characterized by cardiac hypertrophy, fibrosis, cardiomyocyte apoptosis and inflammation. The anti-inflammatory, anti-apoptotic and anti-fibrotic effects of paeoniflorin have been identified in various types of tissue and cells. However, the role of paeoniflorin in cardiac remodeling remains unclear. We performed aortic banding (AB) in mice to induce a cardiac remodeling model in response to pressure overload. Paeoniflorin (20 mg/kg) was administered by daily intraperitoneal (i.p.) injection. Paeoniflorin treatment promoted the survival rate and improved cardiac function of mice at 8 weeks post surgery. AB-induced cardiac hypertrophy, as assessed by heart weight, gross heart, HE and WGA staining, cross-sectional area of cardiomyocyte and mRNA expresssion of hypertrophic makers, was attenuated by paeoniflorin. Paeoniflorin also inhibited collagen deposition, expression of TGFβ, CTGF, collagen Iα and collagen IIIα, and phosphorylation of Smad2 and Smad3 in the heart exposed to pressure overload. Cardiomyocyte apoptosis and induction of Bax and cleaved caspase3 in response to AB were suppressed by paeoniflorin. Furthermore, paeoniflorin decreased the quantity of CD68+ cells, protein levels of TNF-α and IL-1β, and phosphorylation of IκBα and NFκB-p65 in the heart after AB. In conclusion, paeoniflorin attenuated cardiac hypertrophy, fibrosis, apoptosis and inflammation, and improved left ventricular function in pressure overloaded mice. The cardioprotective effect of paeoniflorin is associated with the inhibition of TGFβ/Smads and NF-κB pathways. Topics: Animals; Apoptosis; Benzoates; Biomarkers; Bridged-Ring Compounds; Cardiomegaly; Fibrosis; Glucosides; Heart; Inflammation; Male; Mice; Mice, Inbred C57BL; Monoterpenes; Myocytes, Cardiac; NF-kappa B; Signal Transduction; Smad Proteins; Transforming Growth Factor beta; Ventricular Function, Left; Ventricular Remodeling | 2013 |