peonidin-3-glucoside has been researched along with Inflammation* in 2 studies
2 other study(ies) available for peonidin-3-glucoside and Inflammation
Article | Year |
---|---|
Peonidin-3-O-Glucoside from Purple Corncob Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Mitochondrial and Lysosome Functions to Reduce Oxidative Stress and Inflammation.
A frequent chronic liver condition across the world is nonalcoholic fatty liver disease (NAFLD). Oxidative stress caused by lipid accumulation is generally considered to be the main cause of NAFLD. Anthocyanins can effectively inhibit the production of reactive oxygen species and improve oxidative stress. In this work, six major anthocyanins were separated from purple corncob by semi-preparative liquid chromatography. The effects of the 6 kinds of anthocyanins against NAFLD were investigated using a free fatty acid (FFA)-induced cell model. The results showed that peonidin 3-O-glucoside (P3G) can significantly reduce lipid accumulation in the NAFLD cell model. The treatment with P3G also inhibited oxidative stress via inhibiting the excessive production of reactive oxygen species and superoxide anion, increasing glutathione levels, and enhancing the activities of SOD, GPX, and CAT. Further studies unveiled that treatment with P3G not only alleviated inflammation but also improved the depletion of mitochondrial content and damage of the mitochondrial electron transfer chain developed concomitantly in the cell model. P3G upregulated transcription factor EB (TFEB)-mediated lysosomal function and activated the peroxisome proliferator-activated receptor alpha (PPARα)-mediated peroxisomal lipid oxidation by interacting with PPARα possibly. Overall, this study added to our understanding of the protective effects of purple corn anthocyanins against NAFLD and offered suggestions for developing functional foods containing these anthocyanins. Topics: Anthocyanins; Fatty Acids, Nonesterified; Glucosides; Inflammation; Liver; Lysosomes; Non-alcoholic Fatty Liver Disease; Oxidative Stress; PPAR alpha; Reactive Oxygen Species; Zea mays | 2023 |
Chondroprotective effects of purple corn anthocyanins on advanced glycation end products induction through suppression of NF-κB and MAPK signaling.
Formation of advanced glycation end products (AGEs), which are associated with diabetes mellitus, contributes to prominent features of osteoarthritis, i.e., inflammation-mediated destruction of articular cartilage. Among the phytochemicals which play a role in anti-inflammatory effects, anthocyanins have also been demonstrated to have anti-diabetic properties. Purple corn is a source of three major anthocyanins: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside and peonidin-3-O-glucoside. Purple corn anthocyanins have been demonstrated to be involved in the reduction of diabetes-associated inflammation, suggesting that they may have a beneficial effect on diabetes-mediated inflammation of cartilage. This investigation of the chondroprotective effects of purple corn extract on cartilage degradation found a reduction in glycosaminoglycans released from AGEs induced cartilage explants, corresponding with diminishing of uronic acid loss of the cartilage matrix. Investigation of the molecular mechanisms in human articular chondrocytes showed the anti-inflammatory effect of purple corn anthocyanins and the metabolite, protocatechuic acid (PCA) on AGEs induced human articular chondrocytes via inactivation of the NFκb and MAPK signaling pathways. This finding suggests that purple corn anthocyanins and PCA may help ameliorate AGEs mediated inflammation and diabetes-mediated cartilage degradation. Topics: Anthocyanins; Cartilage; Cell Line; Chondrocytes; Diabetes Complications; Diabetes Mellitus; Glucosides; Glycation End Products, Advanced; Glycosaminoglycans; Humans; Hydroxybenzoates; Inflammation; MAP Kinase Signaling System; NF-kappa B; Osteoarthritis; Zea mays | 2021 |