pectins has been researched along with Xerostomia* in 2 studies
2 other study(ies) available for pectins and Xerostomia
Article | Year |
---|---|
Polymer coated mucoadhesive liposomes intended for the management of xerostomia.
The aim of this work was to prepare and test different pharmaceutical formulations in respect of their potential in relieving dry mouth symptom. Since many of the products available on the market provide only temporary relief to the patients, there is need for new formulations able to retain on the oral mucosa. The prolonged moisture protection could be achieved by combining mucoadhesive materials, such as polymers containing hydrogen bonding groups, with vesicles capable of releasing hydration medium from the inner compartment. In this study three different types of liposomes (positively, negatively and neutrally charged) were coated with five different types of polymers: low-methoxylated pectin (LM-pectin), high-methoxylated pectin (HM-pectin), alginate, chitosan and hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC). The particle size and the zeta potential of the obtained carriers were tested by measuring dynamic light scattering (DLS) and electrophoretic mobility. Later on, selected positively charged liposomes were deposited on a negatively charged mica surface and depicted by atomic force microscopy (AFM). The water sorption properties of polymers, uncoated liposomes and polymer-coated liposomes were studied by the means of dynamic vapor sorption (DVS). The experiments were performed within the relative humidity range RH=95-0-95%, at 35°C. It was found that coating the liposomes with polymers significantly increased the water sorption capacity of the formulations, making them an attractive choice for hydration of the oral mucosa. Topics: Alginates; Cellulose; Chemistry, Pharmaceutical; Chitosan; Drug Carriers; Drug Compounding; Glucuronic Acid; Hexuronic Acids; Humans; Liposomes; Particle Size; Pectins; Polymers; Xerostomia | 2017 |
Water sorption properties of HM-pectin and liposomes intended to alleviate dry mouth.
Pharmaceutical formulations intended for treatment of xerostomia (dry mouth) should be able to keep the oral mucosa hydrated for a prolonged period of time. The products already existing on the market contain water-soluble polymers, however their ability to moisturize the oral mucosa for a longer period of time seems limited. In this paper the sorption properties of water vapor of high-methoxylated pectin (HM-pectin, a hydrophilic biopolymer) and phosphatidylcholine-based (Soya-PC) liposomes have been studied and compared using a gravimetric method. The kinetics of water desorption and sorption have been recorded over the relative humidity range RH=95-0-95%, at 35°C. The obtained isotherms were found to be well described by the n-layer Brunauer-Emmet-Teller (BET) adsorption model. The water isotherms on HM-pectin were Type II (IUPAC), while water isotherms on liposomes were Type III. The maximum water sorption capacity of liposomes (1.2mg water per mg of adsorbent at 95% RH) was found to be twice as high as for pectin. Due to the slower water release from the liposomes, as well as their high water sorption capacity, they seem to have great potential in relieving the symptoms of dry mouth syndrome. Topics: Adsorption; Chemistry, Pharmaceutical; Humidity; Kinetics; Liposomes; Pectins; Phosphatidylcholines; Polymers; Solubility; Time Factors; Water; Xerostomia | 2016 |