pd-198306 and Disease-Models--Animal

pd-198306 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for pd-198306 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes.
    Arthritis and rheumatism, 2003, Volume: 48, Issue:6

    The primary aim of this study was to investigate, using an experimental rabbit model of osteoarthritis (OA), the effect of a selective mitogen-activated protein kinase kinase 1/2 (MEK-1/2) inhibitor, PD 198306, on the development of structural changes. Additional aims were to assess the effects of the inhibitor on levels of phosphorylated extracellular signal-regulated kinase 1/2 (phospho-ERK-1/2) and matrix metalloproteinase 1 (MMP-1; collagenase 1) in OA chondrocytes.. After surgical sectioning of the anterior cruciate ligament of the right knee joint, rabbits with OA were separated into 3 experimental groups: oral treatment with placebo or with PD 198306 at a therapeutic concentration of 10 mg/kg/day or 30 mg/kg/day. Each treatment started immediately after surgery. The animals were killed 8 weeks after surgery. Macroscopic and histologic studies were performed on the cartilage and synovial membrane. The levels of phospho-ERK-1/2 and MMP-1 in OA cartilage chondrocytes were evaluated by immunohistochemistry. Normal, untreated rabbits were used as controls.. OA rabbits treated with the highest dosage of MEK-1/2 inhibitor showed decreases in the surface area (size) of cartilage macroscopic lesions (P < 0.002) and in osteophyte width on the lateral condyles (P = 0.05). Histologically, the severity of synovial inflammation (villous hyperplasia) was also reduced (P < 0.02). In cartilage from placebo-treated OA rabbits, a significantly higher percentage of chondrocytes in the superficial layer stained positive for phospho-ERK-1/2 and MMP-1 compared with normal controls. Rabbits treated with the highest dosage of PD 198306 demonstrated a significant and dose-dependent reduction in the level of phospho-ERK-1/2 and a lower level of MMP-1.. This study demonstrates that, in vivo, PD 198306, a selective inhibitor of MEK-1/2, can partially decrease the development of some of the structural changes in experimental OA. This effect was associated with a reduction in the level of phospho-ERK-1/2 in OA chondrocytes, which probably explains the action of the drug.

    Topics: Animals; Cartilage, Articular; Chondrocytes; Collagenases; Disease Models, Animal; Enzyme Inhibitors; Fluorobenzenes; Hindlimb; Immunohistochemistry; Longitudinal Ligaments; Male; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Matrix Metalloproteinase 1; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Osteoarthritis, Knee; Phosphorylation; Protein Serine-Threonine Kinases; Protein-Tyrosine Kinases; Rabbits; Synovial Membrane; Synovitis

2003