pd-168368 and Pruritus

pd-168368 has been researched along with Pruritus* in 3 studies

Other Studies

3 other study(ies) available for pd-168368 and Pruritus

ArticleYear
Neuromedin B Induces Acute Itch in Mice via the Activation of Peripheral Sensory Neurons.
    Acta dermato-venereologica, 2019, May-01, Volume: 99, Issue:6

    Neuromedin B is expressed in nociceptive and itch-sensitive dorsal root ganglia neurons, but its peripheral pruritogenic potential is not well described. The potential of neuromedin B as a pruritogen and pro-inflammatory peptide in the skin was tested in vivo in an acute model in mice and monkeys as well as an allergic dermatitis model in mice. To identify the underlying mechanisms in vitro real time PCR analysis for neuromedin B and its receptor expression in murine mast cells and dorsal root ganglia as well as functional calcium imaging in the ganglia was applied. Neuromedin B induces itch when injected intradermally, and the peripheral signal is likely transmitted through the activation of dorsal root ganglia. Thus, neuromedin B could be an interesting new therapeutic target for peripheral processing of itch at the level of sensory neurons.

    Topics: Animals; Calcium; Cell Degranulation; Cells, Cultured; Dermatitis, Allergic Contact; Female; Ganglia, Spinal; Gene Expression; Indoles; Injections, Intradermal; Macaca mulatta; Male; Mast Cells; Mice; Neurokinin B; Pruritus; Pyridines; Receptors, Bombesin; RNA, Messenger; Sensory Receptor Cells; Single-Cell Analysis; Toluene 2,4-Diisocyanate

2019
Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice.
    PloS one, 2013, Volume: 8, Issue:6

    Pruritus (itch) is a severe side effect associated with the use of drugs as well as hepatic and hematological disorders. Previous studies in rodents suggest that bombesin receptor subtypes i.e. receptors for gastrin-releasing peptide (GRPr) and neuromedin B (NMBr) differentially regulate itch scratching. However, to what degree spinal GRPr and NMBr regulate scratching evoked by intrathecally administered bombesin-related peptides is not known. The first aim of this study was to pharmacologically compare the dose-response curves for scratching induced by intrathecally administered bombesin-related peptides versus morphine, which is known to elicit itch in humans. The second aim was to determine if spinal GRPr and NMBr selectively or generally mediate scratching behavior. Mice received intrathecal injection of bombesin (0.01-0.3 nmol), GRP (0.01-0.3 nmol), NMB (0.1-1 nmol) or morphine (0.3-3 nmol) and were observed for one hour for scratching activity. Bombesin elicited most profound scratching over one hour followed by GRP and NMB, whereas morphine failed to evoke scratching response indicating the insensitivity of mouse models to intrathecal opioid-induced itch. Intrathecal pretreatment with GRPr antagonist RC-3095 (0.03-0.1 nmol) produced a parallel rightward shift in the dose response curve of GRP-induced scratching but not NMB-induced scratching. Similarly, PD168368 (1-3 nmol) only attenuated NMB but not GRP-induced scratching. Individual or co-administration of RC-3095 and PD168368 failed to alter bombesin-evoked scratching. A higher dose of RC-3095 (0.3 nmol) generally suppressed scratching induced by all three peptides but also compromised motor function in the rotarod test. Together, these data indicate that spinal GRPr and NMBr independently drive itch neurotransmission in mice and may not mediate bombesin-induced scratching. GRPr antagonists at functionally receptor-selective doses only block spinal GRP-elicited scratching but the suppression of scratching at higher doses is confounded by motor impairment.

    Topics: Animals; Behavior, Animal; Bombesin; Gastrin-Releasing Peptide; Indoles; Injections, Spinal; Male; Mice; Morphine; Motor Activity; Peptide Fragments; Pruritus; Pyridines; Receptors, Bombesin; Spinal Cord

2013
The role of central gastrin-releasing peptide and neuromedin B receptors in the modulation of scratching behavior in rats.
    The Journal of pharmacology and experimental therapeutics, 2011, Volume: 337, Issue:3

    Bombesin is a pruritogenic agent that causes intense itch-scratching activity in rodents. Bombesin has high affinity for the gastrin-releasing peptide (GRP) receptor (GRPr) and the neuromedin B (NMB) receptor (NMBr). The aim of this study was to investigate pharmacologically the ability of GRPr and NMBr to elicit scratching behavior in rats. The intracerebroventricular route was selected for drug delivery because the study focused on supraspinal sites of action. The magnitude and duration of scratching produced by the naturally occurring peptides GRP and NMB were characterized. Antagonists selective for GRPr [(d-Tpi6, Leu13Ψ(CH2-NH)-Leu14)Bombesin(6-14) (RC-3095)] and NMBr [(S)-α-methyl-α-[[[(4-nitrophenyl)amino]carbonyl]amino]-N-[[1-(2-pyridinyl)cyclohexyl]methyl]-1H-indole-3-propanamide (PD168368)] were used to define the role of GRPr and NMBr in the scratching response. After intracerebroventricular administration, GRP (0.03-0.3 nmol) and NMB (0.1-1 nmol) dose-dependently elicited marked scratching. There was a tolerance to scratching elicited by daily repeated administration of bombesin, GRP, or NMB. Presession administration of RC-3095 (0.1-1 nmol) and PD168368 (0.3-3 nmol) dose-dependently antagonized scratching elicited by GRP and NMB, respectively. More importantly, 1 nmol of RC-3095 failed to block NMB-elicited scratching, and 3 nmol of PD168368 failed to block GRP-elicited scratching. In addition, pretreatment with effective doses of RC-3095 or PD168368 alone or in combination did not block bombesin-elicited scratching. Through the use of the selective antagonists RC-3095 and PD168368, this study demonstrates that central GRPr and NMBr act independently to elicit scratching behavior and there is an additional, unidentified receptor mechanism underlying bombesin-elicited scratching.

    Topics: Animals; Bombesin; Dose-Response Relationship, Drug; Gastrin-Releasing Peptide; Indoles; Infusions, Intraventricular; Male; Neurokinin B; Neurotransmitter Agents; Peptide Fragments; Pruritus; Pyridines; Rats; Rats, Wistar; Receptors, Bombesin

2011