pd-151746 and Disease-Models--Animal

pd-151746 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for pd-151746 and Disease-Models--Animal

ArticleYear
Enriched housing promotes post-stroke neurogenesis through calpain 1-STAT3/HIF-1α/VEGF signaling.
    Brain research bulletin, 2018, Volume: 139

    Enriched environment (EE) has been shown to promote neurogenesis and functional recovery after ischemic stroke. However, the underlying molecular mechanisms are not fully understood. In this study, C57BL/6 mice underwent middle cerebral artery occlusion (60 min) followed by reperfusion, after which mice were housed in either standard environment (SE) or EE and allowed to survive for 3, 4, 6 or 10 weeks. Ipsilateral subventricular zone (SVZ) or striatum cells were dissociated from ischemic hemispheric brains of enriched mice at 14 days post-ischemia (dpi) and cultured in vitro. Our data showed that post-ischemic EE inhibited calpain 1 activity, and increased the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the ischemic hemisphere of enriched mice at 21 dpi. Calpain 1-specific inhibitor PD151746 further increased p-STAT3 expression and augmented the promoting effects of EE on post-stroke SVZ neural precursor cells (NPCs) proliferation and functional recovery. EE also increased the expression of hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the ischemic hemisphere at 21 dpi. Inhibition of the JAK/STAT3 pathway with AG490 decreased the expression of HIF-1α and VEGF. Furthermore, inhibition of HIF-1α with 2-methoxyestradiol robustly abolished EE-induced elevation of VEGF l expression. Furthermore, VEGF-A promoted the production and secretion of high mobility group box-1 protein (HMGB1) from reactive astrocytes in vitro. Culture supernatant from reactive astrocytes treated with VEGF-A promoted the proliferation and differentiation of NPCs. Glycyrrhizin reversed the promoting effects of EE on post-stroke neurorepair and functional recovery in vivo. Taken together, our data indicate that EE promotes post-stroke functional recovery through the inhibition of calpain 1 activity, and subsequent STAT3-HIF-1α-VEGF-mediated neurogenesis.

    Topics: Acrylates; Analysis of Variance; Animals; Astrocytes; Bromodeoxyuridine; Calpain; Cells, Cultured; Disease Models, Animal; Housing; Hypoxia-Inducible Factor 1, alpha Subunit; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Neurogenesis; Psychomotor Performance; Recovery of Function; Signal Transduction; STAT3 Transcription Factor; Stroke; Swimming; Vascular Endothelial Growth Factor A

2018
Human S100A7 Induces Mature Interleukin1α Expression by RAGE-p38 MAPK-Calpain1 Pathway in Psoriasis.
    PloS one, 2017, Volume: 12, Issue:1

    Psoriatic keratinocytes express exaggerated levels of inflammatory cytokines, and show aberrant hyperproliferation and terminal differentiation in the pathogenesis of psoriasis. The antimicrobial protein hS100A7 (psoriasin) has been found highly expressed in psoriatic skin, but the mechanism and physiological function remain largely unknown. We observed that hS100A7 induces mature interleukin 1α (17kDa) expression in normal human epidermal keratinocytes, which is dependent on RAGE-p38 MAPK and calpain-1 as the inhibitors or knockdown of them completely decreased the expression of mature interleukin1α. Then, we proved mS100a7a15, mature IL-1α and calpain-1 were highly expressed in imquimod-induced psoriasis model and mouse IL-17a-neutralizing antibody treatment attenuated mS100a7a15 expression. At last, PD 151746 (calpain-1 inhibitor) treatment decreased epidermal thickness in imquimod-induced psoriasis model. Taken together, our results suggest that mature IL-1α induced by hS100A7 is via RAGE-p38 MAPK and calpain-1 pathway in keratinocyte and this mechanism may play an important role during psoriasis.

    Topics: Acrylates; Animals; Calpain; Cell Line; Disease Models, Animal; Gene Expression; Humans; Hyperplasia; Interleukin-1alpha; Keratinocytes; Mice; p38 Mitogen-Activated Protein Kinases; Proteolysis; Psoriasis; Receptor for Advanced Glycation End Products; S100 Calcium Binding Protein A7; S100 Proteins

2017