pd-150606 has been researched along with Breast-Neoplasms* in 2 studies
2 other study(ies) available for pd-150606 and Breast-Neoplasms
Article | Year |
---|---|
Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance.
Microparticles (MPs) are released from most eukaryotic cells after the vesiculation of the plasma membrane and serve as vectors of long and short-range signaling. MPs derived from multidrug resistant (MDR) cancer cells carry molecular components of the donor cell such as nucleic acids and proteins, and can alter the activity of drug-sensitive recipient cells through the transfer of their cargo. Given the substantial role of MPs in the acquisition and dissemination of MDR, we propose that the inhibition of MP release provides a novel therapeutic approach. This study characterises the effect of a panel of molecules known to act on MP-biosynthetic pathways. We demonstrate a differential effect by these molecules on MP inhibition that appear dependent on the release of intracellular calcium stores following activation with the calcium ionophore A23187. Calpain inhibitor, PD-150606; a selective inhibitor of Rho-associated, coiled-coil containing protein kinase (ROCK), Y-27632; and the vitamin B5 derivative pantethine, inhibited MP release only upon prior activation with A23187. Calpain inhibitor II showed significant inhibition in the absence of cell activation, whereas the vitamin B5 derivatives cystamine dihydrochloride and cysteamine hydrochloride showed no effect on MP inhibition under either condition. In contrast the classical pharmacological inhibitor of MDR, the calcium channel blocker Verapamil, showed an increase in MP formation on resting cells. These results suggest a potential role for calcium in the mechanism of action for PD-150606, Y-27632 and pantethine. These molecules, together with calpain inhibitor II have shown promise as modulators of MP release and warrant consideration as potential candidates for the development of an alternative therapeutic strategy for the prevention of MP-mediated MDR in cancer. Topics: Acrylates; Amides; Antineoplastic Agents; Breast Neoplasms; Calcimycin; Cell Line, Tumor; Cell-Derived Microparticles; Cystamine; Cysteamine; Drug Resistance, Neoplasm; Female; Humans; Molecular Targeted Therapy; Oligopeptides; Pantetheine; Pyridines; Verapamil | 2015 |
Role of calpain-9 and PKC-delta in the apoptotic mechanism of lumen formation in CEACAM1 transfected breast epithelial cells.
CEACAM1-4S (carcinoembryonic antigen-related cell adhesion molecule 1) is a type I membrane protein with a short (12-amino acid) cytoplasmic tail. Wild type CEACAM1-4S-transfected MCF7 cells form glands with lumena when grown in 3D culture, while null mutations of two putative phosphorylation sites (T457A and S459A) in the cytoplasmic domain fail to undergo lumen formation. When gene chip analysis was performed on mRNA isolated from both wild type and T457A,S459A mutated CEACAM1-4S-transfected MCF7 cells grown in 3D culture, calpain-9 (CAPN9) was identified out of over 400 genes with a >2 log 2 difference as a potential inducer of lumen formation. Inhibition of CAPN9 expression in MCF7/CEACAM1-4S cells by RNAi or by calpeptin or PD150606 inhibited lumen formation. Transfection of CAPN9 into wild type MCF7 cells restores lumen formation demonstrating that calpain-9 may play a critical role in lumen formation. Additionally, we demonstrate that the apoptosis related kinase, PKC-delta, is activated by proteolytic cleavage during lumen formation exclusively in wild type CEACAM1-4S-transfected MCF7 cells grown in 3D culture and that lumen formation is inhibited by either RNAi to PKC-delta or by the PKC-delta inhibitor rottlerin. Topics: Acrylates; Antigens, CD; Apoptosis; Blotting, Western; Breast Neoplasms; Calpain; Cell Adhesion Molecules; Cell Line, Transformed; Cell Line, Tumor; Cysteine Proteinase Inhibitors; Dipeptides; Epithelial Cells; Female; Gene Deletion; Gene Expression Regulation; Humans; Models, Biological; Mutation; Oligonucleotide Array Sequence Analysis; Protein Kinase C-delta; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Transfection | 2010 |