pd-150606 and Brain-Ischemia
pd-150606 has been researched along with Brain-Ischemia* in 2 studies
Other Studies
2 other study(ies) available for pd-150606 and Brain-Ischemia
Article | Year |
---|---|
Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis.
Astrocytes are thought to play a role in the maintenance of homeostasis and the provision of metabolic substrates for neurons as well as the coupling of cerebral blood flow to neuronal activity. Accordingly, astrocytic death due to various types of injury can critically influence neuronal survival. The exact pathway of cell death after brain ischemia is under debate. In the present study, we used astrocytes from rat primary culture treated with persistent oxygen-glucose-deprivation (OGD) as a model of ischemia to examine the pathway of cell death and the relevant mechanisms. We observed changes in the cellular morphology, the energy metabolism of astrocytes, and the percentage of apoptosis or oncosis of the astrocytes induced by OGD. Electron microscopy revealed the co-existence of ultrastructural features in both apoptosis and oncosis in individual cells. The cellular ATP content was gradually decreased and the percentages of apoptotic and oncotic cells were increased during OGD. After 4h of OGD, ATP depletion to less than 35% of the control was observed, and oncosis became the primary pathway for astrocytic death. Increased plasma membrane permeability due to oncosis was associated with increased calpain-mediated degradation of several cytoskeletal proteins, including paxillin, vinculin, vimentin and GFAP. Pre-treatment with the calpain inhibitor 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) could delay the OGD-induced astrocytic oncosis. These results suggest that there is a narrow range of ATP that determines astrocytic oncotic death induced by persistent OGD and that calpain-mediated hydrolysis of the cytoskeletal-associated proteins may contribute to astrocytes oncosis. Topics: Acrylates; Animals; Animals, Newborn; Astrocytes; Brain Ischemia; Calpain; Cell Death; Cell Membrane Permeability; Cells, Cultured; Cerebral Cortex; Cytoskeletal Proteins; Dimaprit; Energy Metabolism; Glucose; Hydrolysis; Oxygen; Rats | 2010 |
Ischemia-induced increase in long-term potentiation is warded off by specific calpain inhibitor PD150606.
In the present study, the effect of specific, membrane-permeable calpain inhibitor, PD150606, was analysed on synaptic efficacy in in vitro brain slices experiments after ischemic insult of rats in vivo, and on cell viability in a glutamate excitotoxicity test in mouse cell culture. Bilateral common carotid artery ligation (BCCL) for 24 h markedly increased calpain activity and enhanced LTP induction in rat hippocampus, although the CA1 layer significantly shrank. The enhancement of LTP could be diminished by short-term application of PD150606 (40 microM) into the perfusion solution. Intracerebroventricular administration of PD150606 (100 microM) parallel with ischemic insult prevented LTP and effectively inhibited hippocampal calpain activity. Intracerebroventricularly applied PD150606 inhibited the CA1 layer shrinkage after common carotid ligation. High level of exogenous glutamate caused marked decrease of cell viability in mouse cerebellar granule cell cultures, which could be partly warded off by 20 microM PD150606. Our data witness that calpain action is intricately involved in the regulation of synaptic efficacy. Topics: Acrylates; Animals; Brain Ischemia; Cell Survival; Glycoproteins; In Vitro Techniques; Long-Term Potentiation; Male; Rats; Rats, Wistar | 2004 |