pd-0325901 and Disease-Models--Animal

pd-0325901 has been researched along with Disease-Models--Animal* in 25 studies

Other Studies

25 other study(ies) available for pd-0325901 and Disease-Models--Animal

ArticleYear
A clinically relevant selective ERK-pathway inhibitor reverses core deficits in a mouse model of autism.
    EBioMedicine, 2023, Volume: 91

    Extracellular signal-regulated kinase (ERK/MAPK) pathway in the brain is hypothesized to be a critical convergent node in the development of autism spectrum disorder. We reasoned that selectively targeting this pathway could reverse core autism-like phenotype in animal models.. Here we tested a clinically relevant, selective inhibitor of ERK pathway, PD325901 (Mirdametinib), in a mouse model of idiopathic autism, the BTBR mice.. We report that treating juvenile mice with PD325901 reduced ERK pathway activation, dose and duration-dependently reduced core disease-modeling deficits in sociability, vocalization and repetitive behavior, and reversed abnormal EEG signals. Further analysis revealed that subchronic treatment did not affect weight gain, locomotion, or neuronal density in the brain. Parallel treatment in the C57BL/6J mice did not alter their phenotype.. Our data indicate that selectively inhibiting ERK pathway using PD325901 is beneficial in the BTBR model, thus further support the notion that ERK pathway is critically involved in the pathophysiology of autism. These results suggest that a similar approach could be applied to animal models of syndromic autism with dysregulated ERK signaling, to further test selectively targeting ERK pathway as a new approach for treating autism.. This has beenwork was supported by Alberta Children's Hospital Research Foundation (JMR & NC), University of Calgary Faculty of Veterinary Medicine (NC), Kids Brain Health Network (NC), and Natural Sciences and Engineering Research Council of Canada (NC).

    Topics: Animals; Autism Spectrum Disorder; Autistic Disorder; Disease Models, Animal; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Mice, Inbred Strains

2023
Modulation of spine fusion with BMP-2, MEK inhibitor (PD0325901), and zoledronic acid in a murine model of NF1 double inactivation.
    Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association, 2021, Volume: 26, Issue:4

    Spine fusion is a common procedure for the treatment of severe scoliosis, a frequent and challenging deformity associated with Neurofibromatosis type 1 (NF1). Moreover, deficiencies in NF1-Ras-MEK signaling affect bone formation and resorption that in turn impacts on spine fusion outcomes.. In this study we describe a new model for AdCre virus induction of Nf1 deficiency in the spines of Nf1. AdCre delivery resulted in abundant fibrous tissue (Nf1. These data not only support the utility of an AdCre-virus induced knockout spine model, but also support further investigation of MEKi and ZA as adjunctive therapies for improving BMP-2 induced spine fusion in the context of NF1.

    Topics: Animals; Benzamides; Diphenylamine; Disease Models, Animal; Mice; Mitogen-Activated Protein Kinase Kinases; Neurofibromatosis 1; Zoledronic Acid

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Costello syndrome model mice with a Hras
    Cell death & disease, 2020, 08-13, Volume: 11, Issue:8

    Costello syndrome is an autosomal dominant disorder that is caused by germline HRAS mutations. Patients with Costello syndrome present craniofacial abnormalities, cardiac defects, and cancer predisposition, as well as skin abnormalities, including papillomas, keratosis pilaris, and eczematous dermatitis. However, the mechanisms underlying the dermatological abnormalities remain unclear. Here, we demonstrated that knock-in mice expressing an Hras G12S mutation (Hras

    Topics: Animals; Benzamides; Cell Proliferation; Costello Syndrome; Cytokines; Dermatitis, Atopic; Diphenylamine; Disease Models, Animal; Disease Susceptibility; Ear; Epidermis; Inflammation Mediators; Interleukin-33; Male; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase Kinases; Models, Biological; Mutation; Protein Kinase Inhibitors; Proto-Oncogene Proteins p21(ras); Pruritus; Pyroglyphidae

2020
Optimization of allosteric MEK inhibitors. Part 2: Taming the sulfamide group balances compound distribution properties.
    Bioorganic & medicinal chemistry letters, 2016, Jan-01, Volume: 26, Issue:1

    Recently, we had identified an unexplored pocket adjacent to the known binding site of allosteric MEK inhibitors which allowed us to design highly potent and in vivo efficacious novel inhibitors. We now report that our initial preclinical candidate, featuring a phenoxy side chain with a sulfamide capping group, displayed human carbonic anhydrase off-target activity and species-dependent blood cell accumulation, which prevented us from advancing this candidate further. Since this sulfamide MEK inhibitor displayed an exceptionally favorable PK profile with low brain penetration potential despite being highly oral bioavailable, we elected to keep the sulfamide capping group intact while taming its unwanted off-target activity by optimizing the structural surroundings. Introduction of a neighboring fluorine atom or installation of a methylene linker reduced hCA potency sufficiently, at the cost of MEK target potency. Switching to a higher fluorinated central core reinstated high MEK potency, leading to two new preclinical candidates with long half-lives, high bioavailabilities, low brain penetration potential and convincing efficacy in a K-Ras-mutated A549 xenograft model.

    Topics: Allosteric Regulation; Animals; Antineoplastic Agents; Biological Availability; Brain; Carbonic Anhydrases; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Dose-Response Relationship, Drug; Half-Life; Humans; Mice; Mitogen-Activated Protein Kinase Kinases; Molecular Structure; Protein Kinase Inhibitors; Structure-Activity Relationship; Sulfonamides; Xenograft Model Antitumor Assays

2016
Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes.
    American journal of physiology. Endocrinology and metabolism, 2016, Apr-15, Volume: 310, Issue:8

    Extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance associated with obesity and type 2 diabetes mellitus. We have now examined the potential of pharmacological targeting of the ERK pathway with MEK (ERK kinase) inhibitors (PD184352 and PD0325901) for the treatment of obesity-associated insulin resistance. The effects of PD184352 and PD0325901 on the expression of adipocytokines and lipolysis activity were thus examined in 3T3-L1 adipocytes maintained in long-term culture as a model of adipocyte hypertrophy. Leptin receptor-deficient (db/db) mice and high-fat diet-fed KKAy mice, both of which are models of type 2 diabetes, were also treated orally with PD184352 to examine its effects on the diabetic condition. ERK activity was increased in hypertrophic 3T3-L1 adipocytes as well as in adipose tissue of db/db mice and high-fat diet-fed KKAy mice, and this enhanced ERK signaling was associated with dysregulation of adipocytokine expression and increased lipolysis activity. Specific blockade of the ERK pathway in hypertrophic 3T3-L1 adipocytes by MEK inhibitors ameliorated the dysregulation of adipocytokine expression and suppressed the enhanced lipolysis activity. Furthermore, repeated oral administration of PD184352 normalized hyperglycemia and hyperlipidemia and improved insulin sensitivity and glucose tolerance in the diabetic mice. These results suggest that sustained activation of the ERK pathway in adipocytes is associated with the pathogenesis of type 2 diabetes and that selective blockade of this pathway with MEK inhibitors warrants further study as a promising approach to the treatment of insulin resistance and type 2 diabetes.

    Topics: 3T3-L1 Cells; Adipocytes; Adipokines; Adiponectin; Animals; Benzamides; Blood Glucose; Chemokine CCL2; Diabetes Mellitus, Type 2; Diet, High-Fat; Diphenylamine; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Fatty Acids, Nonesterified; Glucose Tolerance Test; Hyperlipidemias; Immunoblotting; In Vitro Techniques; Insulin; Insulin Resistance; Interleukin-6; Lipolysis; Male; MAP Kinase Signaling System; Mice; Protein Kinase Inhibitors; Real-Time Polymerase Chain Reaction; Receptors, Leptin; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Triglycerides; Tumor Necrosis Factor-alpha

2016
Mitogen-activated protein kinases (MAPKs) are modulated during Francisella tularensis infection, but inhibition of extracellular-signal-regulated kinases (ERKs) is of limited therapeutic benefit.
    European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 2016, Volume: 35, Issue:12

    Francisella tularensis is a Gram-negative intracellular bacterium that causes the disease tularemia. The disease can be fatal if left untreated and there is currently no licenced vaccine available; the identification of new therapeutic targets is therefore required. Toll-like receptors represent an interesting target for therapeutic modulation due to their essential role in generating immune responses. In this study, we analysed the in vitro expression of the key mitogen-activated protein kinases (MAPKs) p38, JNK and ERK in murine alveolar macrophages during infection with F. tularensis. The phosphorylation profile of ERK highlighted its potential as a target for therapeutic modulation and subsequently the effect of ERK manipulation was measured in a lethal intranasal F. tularensis in vivo model of infection. The selective ERK1/2 inhibitor PD0325901 was administered orally to mice either pre- or post-challenge with F. tularensis strain LVS. Both treatment regimens selectively reduced ERK expression, but only the pre-exposure treatment produced decreased bacterial burden in the spleen and liver, which correlated with a significant reduction in the pro-inflammatory cytokines IFN-γ, MCP-1, IL-6, and TNF-α. However, no overall improvements in survival were observed for treated animals in this study. ERK may represent a useful therapeutic target where selective dampening of the immune response (to control the damaging pathology seen during infection) is combined with antibiotic treatment required to eradicate bacterial infection. This combination treatment strategy has been shown to be effective in other models of tularemia.

    Topics: Animals; Bacterial Load; Benzamides; Cell Line; Cytokines; Diphenylamine; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Female; Gene Expression Profiling; Host-Pathogen Interactions; Liver; Macrophages, Alveolar; Mice, Inbred BALB C; Protein Kinase Inhibitors; Spleen; Treatment Outcome; Tularemia

2016
Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors.
    Scientific reports, 2016, 11-11, Volume: 6

    Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination "nanochemotherapy" for treating patients with MPNSTs.

    Topics: Animals; Benzamides; Cell Line, Tumor; Diphenylamine; Disease Models, Animal; Drug Screening Assays, Antitumor; Extracellular Signal-Regulated MAP Kinases; Ferrocyanides; Hyperthermia, Induced; Infrared Rays; Laser Therapy; MAP Kinase Kinase Kinases; Mice; Nanoparticles; Neoplasm Proteins; Neurilemmoma; Neurofibromatosis 1; Protein Kinase Inhibitors; Proto-Oncogene Proteins p21(ras); Surface Plasmon Resonance

2016
Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice.
    Mucosal immunology, 2015, Volume: 8, Issue:3

    Mitogen-activated protein kinase (MAPK) phosphatases are dual-specificity phosphatases (DUSPs) that dephosphorylate phosphothreonine and phosphotyrosine residues within MAPKs. DUSP6 preferentially dephosphorylates extracellular signal-regulated kinases 1 and 2 (ERK1/2) rendering them inactive. Here, we study the role of DUSP6 in CD4(+) T-cell function, differentiation, and inflammatory profile in the colon. Upon T-cell receptor (TCR) stimulation, DUSP6 knockout (Dusp6(-/-)) CD4(+) T cells showed increased ERK1/2 activation, proliferation, T helper 1 differentiation, and interferon-γ production, as well as a marked decrease in survival, interleukin- 17A (IL-17A) secretion, and regulatory T-cell function. To analyze the role of DUSP6 in vivo, we employed the Il10(-/-) model of colitis and generated Il10(-/-)/Dusp6(-/-) double-knockout mice. Il10(-/-)/Dusp6(-/-) mice suffered from accelerated and exacerbated spontaneous colitis, which was prevented by ERK1/2 inhibition. ERK1/2 inhibition also augmented regulatory T-cell differentiation in vitro and in vivo in both C57Bl/6 and Dusp6(-/-) mice. In summary, DUSP6 regulates CD4(+) T-cell activation and differentiation by inhibiting the TCR-dependent ERK1/2 activation. DUSP6 might therefore be a potential intervention target for limiting aberrant T-cell responses in T-cell-mediated diseases, such as inflammatory bowel disease.

    Topics: Animals; Benzamides; Cell Differentiation; Cell Proliferation; Colitis; Colon; Diphenylamine; Disease Models, Animal; Dual Specificity Phosphatase 6; Gene Expression Regulation; Immunity, Mucosal; Interferon-gamma; Interleukin-10; Interleukin-17; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Receptors, Antigen, T-Cell; Signal Transduction; T-Lymphocytes, Regulatory; Th1 Cells

2015
PKC/MEK inhibitors suppress oxaliplatin-induced neuropathy and potentiate the antitumor effects.
    International journal of cancer, 2015, Jul-01, Volume: 137, Issue:1

    Oxaliplatin is a key drug commonly used in colorectal cancer treatment. Despite high clinical efficacy, its therapeutic application is limited by common, dose-limiting occurrence of neuropathy. As usual symptomatic neuropathy treatments fail to improve the patients' condition, there is an urgent need to advance our understanding of the pathogenesis of neuropathy to propose effective therapy and ensure adequate pain management. Oxaliplatin-induced neuropathy was recently reported to be associated with protein kinase C (PKC) activation. It is unclear, however, whether PKC inhibition can prevent neuropathy. In our current studies, we found that a PKC inhibitor, tamoxifen, inhibited oxaliplatin-induced neuropathy via the PKC/extracellular signal-regulated kinase (ERK)/c-Fos pathway in lumbar spinal cords (lumbar segments 4-6). Additionally, tamoxifen was shown to act in synergy with oxaliplatin to inhibit growth in tumor cells-implanted mice. Moreover, mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, PD0325901, suppressed oxaliplatin-induced neuropathy and enhanced oxaliplatin efficacy. Our results indicate that oxaliplatin-induced neuropathy is associated with PKC/ERK/c-Fos pathway in lumbar spinal cord. Additionally, we demonstrate that disruption of this pathway by PKC and MEK inhibitors suppresses oxaliplatin-induced neuropathy, thereby suggesting that PKC and MEK inhibitors may be therapeutically useful in preventing oxaliplatin-induced neuropathy and could aid in combination antitumor pharmacotherapy.

    Topics: Animals; Benzamides; Cell Line, Tumor; Cell Proliferation; Colorectal Neoplasms; Diphenylamine; Disease Models, Animal; Drug Synergism; Hyperalgesia; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; Organoplatinum Compounds; Oxaliplatin; Protein Kinase Inhibitors; Spinal Cord; Tamoxifen

2015
Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of Neurofibromatosis type 1.
    Pediatric blood & cancer, 2015, Volume: 62, Issue:10

    Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes affected individuals to formation of benign neurofibromas, peripheral nerve tumors that can be associated with significant morbidity. Loss of the NF1 Ras-GAP protein causes increased Ras-GTP, and we previously found that inhibiting MEK signaling downstream of Ras can shrink established neurofibromas in a genetically engineered murine model.. We studied effects of MEK inhibition using 1.5 mg/kg/day PD-0325901 prior to neurofibroma onset in the Nf1 (flox/flox); Dhh-Cre mouse model. We also treated mice with established tumors at 0.5 and 1.5 mg/kg/day doses of PD-0325901. We monitored tumor volumes using MRI and volumetric measurements, and measured pharmacokinetic and pharmacodynamic endpoints.. Early administration significantly delayed neurofibroma development as compared to vehicle controls. When treatment was discontinued neurofibromas grew, but no rebound effect was observed and neurofibromas remained significantly smaller than controls. Low dose treatment of mice with PD-0325901 resulted in neurofibroma shrinkage equivalent to that observed at higher doses. Tumor cell proliferation decreased, although less than at higher doses with drug. Tumor blood vessels per area correlated with tumor shrinkage.. Neurofibroma development was not prevented by MEK inhibition, beginning at 1 month of age, but tumor size was controlled by early treatment. Moreover, treatment with PD-0325901 at very low doses may shrink neurofibromas while minimizing toxicity. These studies highlight how genetically engineered mouse models can guide clinical trial design.

    Topics: Animals; Antineoplastic Agents; Benzamides; Diphenylamine; Disease Models, Animal; Enzyme Inhibitors; Immunohistochemistry; MAP Kinase Kinase Kinases; Mice; Mice, Inbred C57BL; Microscopy, Electron; Neurofibromatosis 1

2015
MEK Inhibitor PD-0325901 Overcomes Resistance to PI3K/mTOR Inhibitor PF-5212384 and Potentiates Antitumor Effects in Human Head and Neck Squamous Cell Carcinoma.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2015, Sep-01, Volume: 21, Issue:17

    Head and neck squamous cell carcinomas exhibit variable sensitivity to inhibitors of the PI3K/mTOR pathway, an important target of genomic alterations in this cancer type. The mitogen-activated protein kinase kinase (MEK)/ERK/activator protein 1 (AP-1) and nuclear factor-κB (NF-κB) pathways are also frequently co-activated, but their roles in resistance mechanisms to PI3K/mTOR inhibitors and as therapeutic targets in head and neck squamous cell carcinoma (HNSCC) are not well defined.. We determined the IC50s of dual PI3K/mTOR inhibitor PF-05212384 (PF-384) by XTT assays in 14 HNSCC lines with PI3K/Akt/mTOR cascade alterations. In two resistant models, we further characterized the molecular, cellular, and in vivo attributes and effects of combining PF-384 with MEK inhibitor PD-0325901 (PD-901).. PF-384 IC50s varied between 0.75 and 133 nmol/L in 14 HNSCC lines with overexpression or mutations of PIK3CA, and sensitivity correlated with increased phospho-AKT(T308/S473). In resistant UMSCC-1 and -46 models, PF-384 increased G0-/G1-phase accumulation but weakly induced sub-G0 cell death. PF-384 inhibited direct targets of PI3K/mTOR, but incompletely attenuated co-activated ERK and UMSCC-1 xenograft growth in vivo. PD-901 strongly inhibited MEK/ERK targets, and the combination of PF-384 and PD-901 inhibited downstream NF-κB and AP-1 transactivation, and IL8 and VEGF production in vitro. PD-901 potently inhibited tumor growth alone and with PF384, enhanced antiproliferative, apoptotic, and anti-angiogenesis activity in vivo.. PI3K/mTOR inhibitor PF-384 exhibits variable activity in a panel of HNSCC cell lines with differing PIK3CA expression and mutation status. MEK inhibitor PD-901 overcomes resistance and enhances antitumor effects observed with PF-384 in vivo.

    Topics: Animals; Antineoplastic Agents; Benzamides; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cytokines; Diphenylamine; Disease Models, Animal; Drug Resistance, Neoplasm; Drug Synergism; Gene Expression; Genes, Reporter; Head and Neck Neoplasms; Humans; Inflammation Mediators; Mitogen-Activated Protein Kinase Kinases; Morpholines; NF-kappa B; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Signal Transduction; Squamous Cell Carcinoma of Head and Neck; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcriptional Activation; Triazines; Xenograft Model Antitumor Assays

2015
TP53 Silencing Bypasses Growth Arrest of BRAFV600E-Induced Lung Tumor Cells in a Two-Switch Model of Lung Tumorigenesis.
    Cancer research, 2015, Aug-01, Volume: 75, Issue:15

    Lung carcinogenesis is a multistep process in which normal lung epithelial cells are converted to cancer cells through the sequential acquisition of multiple genetic or epigenetic events. Despite the utility of current genetically engineered mouse (GEM) models of lung cancer, most do not allow temporal dissociation of the cardinal events involved in lung tumor initiation and cancer progression. Here we describe a novel two-switch GEM model for BRAF(V600E)-induced lung carcinogenesis allowing temporal dissociation of these processes. In mice carrying a Flp recombinase-activated allele of Braf (Braf(FA)) in conjunction with Cre-regulated alleles of Trp53, Cdkn2a, or c-MYC, we demonstrate that secondary genetic events can promote bypass of the senescence-like proliferative arrest displayed by BRAF(V600E)-induced lung adenomas, leading to malignant progression. Moreover, restoring or activating TP53 in cultured BRAF(V600E)/TP53(Null) or BRAF(V600E)/INK4A-ARF(Null) lung cancer cells triggered a G1 cell-cycle arrest regardless of p19(ARF) status. Perhaps surprisingly, neither senescence nor apoptosis was observed upon TP53 restoration. Our results establish a central function for the TP53 pathway in restricting lung cancer development, highlighting the mechanisms that limit malignant progression of BRAF(V600E)-initiated tumors.

    Topics: Adenocarcinoma; Adenoma; Animals; Benzamides; Cell Cycle Checkpoints; Cell Proliferation; Cell Survival; Cyclin-Dependent Kinase Inhibitor p16; Diphenylamine; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Gene Silencing; Lung Neoplasms; MAP Kinase Kinase Kinases; Mice, Transgenic; Proto-Oncogene Proteins B-raf; Tumor Suppressor Protein p53

2015
Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer.
    Cancer chemotherapy and pharmacology, 2014, Volume: 73, Issue:3

    Metastatic bladder cancer is a serious condition with a 5-year survival rate of approximately 14 %, a rate that has remained unchanged for almost three decades. Thus, there is a profound need to identify the driving mutations for these aggressive tumors to better determine appropriate treatments. Mutational analyses of clinical samples suggest that mutations in either the phosphoinositide-3 kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) or RAS/MEK/ERK pathways drive bladder cancer progression, although it remains to be tested whether the inhibition of either (or both) of these pathways can arrest PI3K/mTOR- or Ras-driven proliferation.. Herein, we used several bladder cancer cell lines to determine drug sensitivity according to genetic background and also studied mouse models of engrafted UM-UC-3 cells and patient-derived xenografts (PDXs) to test PI3K/mTOR and MEK inhibition in vivo.. Inhibition of these pathways utilizing PF-04691502, a PI3K and mTOR inhibitor, and PD-0325901, a MEK inhibitor, slowed the tumor growth of PDX models of bladder cancer. The growth inhibitory effect of combination therapy was similar to that of the clinical maximum dose of cisplatin; mechanistically, this appeared to predominantly occur via drug-induced cytostatic growth inhibition as well as diminished vascular endothelial growth factor secretion in the tumor models. Kinase arrays of tumors harvested after treatment demonstrated activated p53 and Axl as well as STAT1 and STAT3.. Taken together, these results indicate that clinically relevant doses of PF-04691502 and PD-0325901 can suppress bladder tumor growth in PDX models, thus offering additional potential treatment options by a precision medicine approach.

    Topics: Aged, 80 and over; Animals; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Diphenylamine; Disease Models, Animal; Female; Humans; MAP Kinase Kinase Kinases; MAP Kinase Signaling System; Mice; Mice, Inbred NOD; Mice, SCID; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Pyridones; Pyrimidines; Random Allocation; TOR Serine-Threonine Kinases; Urinary Bladder Neoplasms; Xenograft Model Antitumor Assays

2014
Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity.
    Oncotarget, 2014, Mar-30, Volume: 5, Issue:6

    Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that occur spontaneously, or from benign plexiform neurofibromas, in the context of the genetic disorder Neurofibromatosis Type 1 (NF1). The current standard treatment includes surgical resection, high-dose chemotherapy, and/or radiation. To date, most targeted therapies have failed to demonstrate effectiveness against plexiform neurofibromas and MPNSTs. Recently, several studies suggested that the mTOR and MAPK pathways are involved in the formation and progression of MPNSTs. Everolimus (RAD001) inhibits the mTOR and is currently FDA approved for several types of solid tumors. PD-0325901 (PD-901) inhibits MEK, a component of the MAPK pathway, and is currently in clinical trials. Here, we show in vitro than MPNST cell lines are more sensitive to inhibition of cellular growth by Everolimus and PD-901 than immortalized human Schwann cells. In combination, these drugs synergistically inhibit cell growth and induce apoptosis. In two genetically engineered mouse models of MPNST formation, modeling both sporadic and NF1-associated MPNSTs, Everolimus, or PD-901 treatment alone each transiently reduced tumor burden and size, and extended lifespan. However, prolonged treatment of each single agent resulted in the development of resistance and reactivation of target pathways. Combination therapy using Everolimus and PD-901 had synergistic effects on reducing tumor burden and size, and increased lifespan. Combination therapy allowed persistent and prolonged reduction in signaling through both pathways. These data suggest that co-targeting mTOR and MEK may be effective in patients with sporadic or NF1-associated MPNSTs.

    Topics: Animals; Apoptosis; Benzamides; Blotting, Western; Cell Proliferation; Cells, Cultured; Diphenylamine; Disease Models, Animal; Drug Synergism; Everolimus; Fluorescent Antibody Technique; Humans; Immunoenzyme Techniques; Immunosuppressive Agents; Mice; Mice, Transgenic; Mitogen-Activated Protein Kinases; Neoplasm Grading; Neurilemmoma; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Schwann Cells; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases

2014
A Combination of rhBMP-2 (Recombinant Human Bone Morphogenetic Protein-2) and MEK (MAP Kinase/ERK Kinase) Inhibitor PD0325901 Increases Bone Formation in a Murine Model of Neurofibromatosis Type I Pseudarthrosis.
    The Journal of bone and joint surgery. American volume, 2014, Jul-16, Volume: 96, Issue:14

    Congenital tibial dysplasia is a severe pediatric condition that classically results in a persistent pseudarthrosis. A majority of these cases are associated with neurofibromatosis type I (NF1), a genetic disorder in which inactivation of the NF1 gene leads to overactivity of the Ras-MEK-MAPK (mitogen-activated protein kinase) signaling pathway. We therefore hypothesized that pharmaceutical inhibition of MEK-MAPK may be a beneficial therapeutic strategy.. Animals treated with the delivery vehicle alone, PD0325901, rhBMP-2, or the PD0325901 + rhBMP-2 combination showed union rates of 0%, 8%, 69% (p < 0.01), or 80% (p < 0.01), respectively, at twenty-one days after fracture. Mice treated with the rhBMP-2 + PD0325901 combination displayed a callus volume sixfold greater than the vehicle controls and twofold greater than the group receiving rhBMP-2 alone. Although MEK inhibition combined with rhBMP-2 led to increases in bone formation and union, the proportion of fibrous tissue in the callus was not significantly reduced.. The data suggest that MEK inhibition can promote bone formation in combination with rhBMP-2 in the context of an NF1 pseudarthrosis. However, PD0325901 did not promote substantive bone anabolism in the absence of an exogenous anabolic stimulus and did not suppress fibrosis.. This study examines a signaling pathway-based approach to treating poor bone healing in a model of NF1 pseudarthrosis.

    Topics: Animals; Benzamides; Bone Morphogenetic Protein 2; Diphenylamine; Disease Models, Animal; Drug Therapy, Combination; Female; Mice; Mitogen-Activated Protein Kinase Kinases; Neurofibromatosis 1; Osteogenesis; Pseudarthrosis; Recombinant Proteins; Transforming Growth Factor beta

2014
New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome.
    Human molecular genetics, 2014, Dec-15, Volume: 23, Issue:24

    Cardio-facio-cutaneous (CFC) syndrome is one of the 'RASopathies', a group of phenotypically overlapping syndromes caused by germline mutations that encode components of the RAS-MAPK pathway. Germline mutations in BRAF cause CFC syndrome, which is characterized by heart defects, distinctive facial features and ectodermal abnormalities. To define the pathogenesis and to develop a potential therapeutic approach in CFC syndrome, we here generated new knockin mice (here Braf(Q241R/+)) expressing the Braf Q241R mutation, which corresponds to the most frequent mutation in CFC syndrome, Q257R. Braf(Q241R/+) mice manifested embryonic/neonatal lethality, showing liver necrosis, edema and craniofacial abnormalities. Histological analysis revealed multiple heart defects, including cardiomegaly, enlarged cardiac valves, ventricular noncompaction and ventricular septal defects. Braf(Q241R/+) embryos also showed massively distended jugular lymphatic sacs and subcutaneous lymphatic vessels, demonstrating lymphatic defects in RASopathy knockin mice for the first time. Prenatal treatment with a MEK inhibitor, PD0325901, rescued the embryonic lethality with amelioration of craniofacial abnormalities and edema in Braf(Q241R/+) embryos. Unexpectedly, one surviving pup was obtained after treatment with a histone 3 demethylase inhibitor, GSK-J4, or NCDM-32b. Combination treatment with PD0325901 and GSK-J4 further increased the rescue from embryonic lethality, ameliorating enlarged cardiac valves. These results suggest that our new Braf knockin mice recapitulate major features of RASopathies and that epigenetic modulation as well as the inhibition of the ERK pathway will be a potential therapeutic strategy for the treatment of CFC syndrome.

    Topics: Animals; Benzamides; Benzazepines; Diphenylamine; Disease Models, Animal; Drug Synergism; Ectodermal Dysplasia; Embryo, Mammalian; Facies; Failure to Thrive; Female; Gene Expression Regulation; Gene Knock-In Techniques; Genes, Lethal; Heart Defects, Congenital; Histone Deacetylase Inhibitors; Histone Demethylases; Humans; Liver; Male; MAP Kinase Kinase Kinases; Mice; Mice, Transgenic; Mutation; Myocardium; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Pyrimidines; Signal Transduction; Skull

2014
Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma.
    Molecular cancer therapeutics, 2013, Volume: 12, Issue:9

    Angiosarcoma is a rare neoplasm of endothelial origin that has limited treatment options and poor five-year survival. As a model for human angiosarcoma, we studied primary cells and tumorgrafts derived from canine hemangiosarcoma (HSA), which is also an endothelial malignancy with similar presentation and histology. Primary cells isolated from HSA showed constitutive extracellular signal-regulated kinase (ERK) activation. The mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor CI-1040 reduced ERK activation and the viability of primary cells derived from visceral, cutaneous, and cardiac HSA in vitro. HSA-derived primary cells were also sensitive to sorafenib, an inhibitor of B-Raf and multireceptor tyrosine kinases. In vivo, CI-1040 or PD0325901 decreased the growth of cutaneous cell-derived xenografts and cardiac-derived tumorgrafts. Sorafenib decreased tumor size in both in vivo models, although cardiac tumorgrafts were more sensitive. In human angiosarcoma, we noted that 50% of tumors stained positively for phosphorylated ERK1/2 and that the expression of several MEK-responsive transcription factors was upregulated. Our data showed that MEK signaling is essential for the growth of HSA in vitro and in vivo and provided evidence that the same pathways are activated in human angiosarcoma. This indicates that MEK inhibitors may form part of an effective therapeutic strategy for the treatment of canine HSA or human angiosarcoma, and it highlights the use of spontaneous canine cancers as a model of human disease.

    Topics: Animals; Antineoplastic Agents; Benzamides; Cell Proliferation; Diphenylamine; Disease Models, Animal; Dogs; Drug Screening Assays, Antitumor; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation, Neoplastic; Hemangiosarcoma; Humans; Mice; Mice, Nude; Mitogen-Activated Protein Kinase Kinases; Niacinamide; Phenylurea Compounds; Signal Transduction; Sorafenib; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2013
NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition.
    Molecular cancer therapeutics, 2013, Volume: 12, Issue:9

    Soft-tissue sarcomas are a heterogeneous group of tumors arising from connective tissue. Recently, mutations in the neurofibromin 1 (NF1) tumor suppressor gene were identified in multiple subtypes of human soft-tissue sarcomas. To study the effect of NF1 inactivation in the initiation and progression of distinct sarcoma subtypes, we have developed a novel mouse model of temporally and spatially restricted NF1-deleted sarcoma. To generate primary sarcomas, we inject adenovirus containing Cre recombinase into NF1(flox/flox); Ink4a/Arf(flox/flox) mice at two distinct orthotopic sites: intramuscularly or in the sciatic nerve. The mice develop either high-grade myogenic sarcomas or malignant peripheral nerve sheath tumor (MPNST)-like tumors, respectively. These tumors reflect the histologic properties and spectrum of sarcomas found in patients. To explore the use of this model for preclinical studies, we conducted a study of mitogen-activated protein kinase (MAPK) pathway inhibition with the MEK inhibitor PD325901. Treatment with PD325901 delays tumor growth through decreased cyclin D1 mRNA and cell proliferation. We also examined the effects of MEK inhibition on the native tumor stroma and find that PD325901 decreases VEGFα expression in tumor cells with a corresponding decrease in microvessel density. Taken together, our results use a primary tumor model to show that sarcomas can be generated by loss of NF1 and Ink4a/Arf, and that these tumors are sensitive to MEK inhibition by direct effects on tumor cells and the surrounding microenvironment. These studies suggest that MEK inhibitors should be further explored as potential sarcoma therapies in patients with tumors containing NF1 deletion.

    Topics: Animals; Antineoplastic Agents; Benzamides; Cell Proliferation; Diphenylamine; Disease Models, Animal; Gene Deletion; Genes, Neurofibromatosis 1; Humans; MAP Kinase Signaling System; Mice; Mice, Transgenic; Microvessels; Mitogen-Activated Protein Kinase Kinases; Nerve Sheath Neoplasms; Neurofibromin 1; Sarcoma

2013
Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice.
    The Journal of clinical investigation, 2013, Volume: 123, Issue:1

    Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile myelomonocytic leukemia (JMML), an aggressive myeloproliferative neoplasm (MPN) that is refractory to conventional chemotherapy. Conditional inactivation of the Nf1 tumor suppressor in hematopoietic cells of mice causes a progressive MPN that accurately models JMML and chronic myelomonocytic leukemia (CMML). We characterized the effects of Nf1 loss on immature hematopoietic populations and investigated treatment with the MEK inhibitor PD0325901 (hereafter called 901). Somatic Nf1 inactivation resulted in a marked expansion of immature and lineage-committed myelo-erythroid progenitors and ineffective erythropoiesis. Treatment with 901 induced a durable drop in leukocyte counts, enhanced erythropoietic function, and markedly reduced spleen sizes in mice with MPN. MEK inhibition also restored a normal pattern of erythroid differentiation and greatly reduced extramedullary hematopoiesis. Remarkably, genetic analysis revealed the persistence of Nf1-deficient hematopoietic cells, indicating that MEK inhibition modulates the proliferation and differentiation of Nf1 mutant cells in vivo rather than eliminating them. These data provide a rationale for performing clinical trials of MEK inhibitors in patients with JMML and CMML.

    Topics: Animals; Benzamides; Cell Differentiation; Cell Proliferation; Child; Child, Preschool; Diphenylamine; Disease Models, Animal; Erythropoiesis; Hematopoiesis, Extramedullary; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myelomonocytic, Juvenile; Mice; Mice, Mutant Strains; Mitogen-Activated Protein Kinase Kinases; Neurofibromatosis 1; Neurofibromin 1

2013
The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms.
    Journal of molecular medicine (Berlin, Germany), 2012, Volume: 90, Issue:6

    The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade.

    Topics: Animals; Benzamides; Diphenylamine; Disease Models, Animal; Enzyme Activation; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Melanoma; Mice; Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; PTEN Phosphohydrolase; Signal Transduction

2012
Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model.
    Nature cell biology, 2012, Feb-12, Volume: 14, Issue:3

    Lung cancer is one of the leading cancer malignancies, with a five-year survival rate of only ~15%. We have developed a lentiviral-vector-mediated mouse model, which enables generation of non-small-cell lung cancer from less than 100 alveolar epithelial cells, and investigated the role of IKK2 and NF-κB in lung-cancer development. IKK2 depletion in tumour cells significantly attenuated tumour proliferation and significantly prolonged mouse survival. We identified Timp1, one of the NF-κB target genes, as a key mediator for tumour growth. Activation of the Erk signalling pathway and cell proliferation requires Timp-1 and its receptor CD63. Knockdown of either Ikbkb or Timp1 by short hairpin RNAs reduced tumour growth in both xenograft and lentiviral models. Our results thus suggest the possible application of IKK2 and Timp-1 inhibitors in treating lung cancer.

    Topics: Animals; Benzamides; Cell Line, Tumor; Cell Proliferation; Diphenylamine; Disease Models, Animal; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; I-kappa B Kinase; Kaplan-Meier Estimate; Lung Neoplasms; Male; MAP Kinase Signaling System; Mice; Mice, Knockout; Mice, Nude; Oligonucleotide Array Sequence Analysis; Proto-Oncogene Proteins p21(ras); Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Tetraspanin 30; Tissue Inhibitor of Metalloproteinase-1; Tumor Burden

2012
Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice.
    Endocrinology, 2012, Volume: 153, Issue:4

    The X-linked hypophosphatemic (Hyp) mouse carries a loss-of-function mutation in the phex gene and is characterized by hypophosphatemia due to renal phosphate (Pi) wasting, inappropriately suppressed 1,25-dihydroxyvitamin D [1,25(OH)₂D] production, and rachitic bone disease. Increased serum fibroblast growth factor-23 concentration is responsible for the disordered metabolism of Pi and 1,25(OH)₂D. In the present study, we tested the hypothesis that chronic inhibition of fibroblast growth factor-23-induced activation of MAPK signaling in Hyp mice can reverse their metabolic derangements and rachitic bone disease. Hyp mice were administered the MAPK inhibitor, PD0325901 orally for 4 wk. PD0325901 induced a 15-fold and 2-fold increase in renal 1α-hydroxylase mRNA and protein abundance, respectively, and thereby higher serum 1,25(OH)₂D concentrations (115 ± 13 vs. 70 ± 16 pg/ml, P < 0.05), compared with values in vehicle-treated Hyp mice. With PD0325901, serum Pi levels were higher (5.1 ± 0.5 vs. 3 ± 0.2 mg/dl, P < 0.05), and the protein abundance of sodium-dependent phosphate cotransporter Npt2a, was greater than in vehicle-treated mice. The rachitic bone disease in Hyp mice is characterized by abundant unmineralized osteoid bone volume, widened epiphyses, and disorganized growth plates. In PD0325901-treated Hyp mice, mineralization of cortical and trabecular bone increased significantly, accompanied by a decrease in unmineralized osteoid volume and thickness, as determined by histomorphometric analysis. The improvement in mineralization in PD0325901-treated Hyp mice was confirmed by microcomputed tomography analysis, which showed an increase in cortical bone volume and thickness. These findings provide evidence that in Hyp mice, chronic MAPK inhibition improves disordered Pi and 1,25(OH)₂D metabolism and bone mineralization.

    Topics: Animals; Benzamides; Bone and Bones; Bone Diseases; Diphenylamine; Disease Models, Animal; Enzyme Inhibitors; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Hypophosphatemia; Male; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Minerals; Mitogen-Activated Protein Kinase Kinases; Mutation; PHEX Phosphate Regulating Neutral Endopeptidase; Phosphates; Signal Transduction; Vitamin D

2012
MEK1/2 inhibition elicits regression of autochthonous lung tumors induced by KRASG12D or BRAFV600E.
    Cancer research, 2012, Jun-15, Volume: 72, Issue:12

    Genetically engineered mouse (GEM) models of lung tumorigenesis allow careful evaluation of lung tumor initiation, progression, and response to therapy. Using GEM models of oncogene-induced lung cancer, we show the striking similarity of the earliest stages of tumorigenesis induced by KRAS(G12D) or BRAF(V600E). Cre-mediated expression of KRAS(G12D) or BRAF(V600E) in the lung epithelium of adult mice initially elicited benign lung tumors comprising cuboidal epithelial cells expressing markers of alveolar pneumocytes. Strikingly, in a head-to-head comparison, oncogenic BRAF(V600E) elicited many more such benign tumors and did so more rapidly than KRAS(G12D). However, despite differences in the efficiency of benign tumor induction, only mice with lung epithelium expression of KRAS(G12D) developed malignant non-small cell lung adenocarcinomas. Pharmacologic inhibition of mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK)1/2 combined with in vivo imaging showed that initiation and maintenance of both BRAF(V600E)- or KRAS(G12D)-induced lung tumors was dependent on MEK→ERK signaling. Although the tumors dramatically regressed in response to MEK1/2 inhibition, they regrew following cessation of drug treatment. Together, our findings show that RAF→MEK→ERK signaling is both necessary and sufficient for KRAS(G12D)-induced benign lung tumorigenesis in GEM models. The data also emphasize the ability of KRAS(G12D) to promote malignant lung cancer progression compared with oncogenic BRAF(V600E).

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Animals; Antineoplastic Agents; Benzamides; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Diphenylamine; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Lung Neoplasms; MAP Kinase Kinase 1; MAP Kinase Kinase 2; MAP Kinase Signaling System; Mice; Mice, Transgenic; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins p21(ras); Respiratory Mucosa; Tumor Cells, Cultured

2012
PD0325901, a mitogen-activated protein kinase kinase inhibitor, produces ocular toxicity in a rabbit animal model of retinal vein occlusion.
    Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics, 2009, Volume: 25, Issue:6

    PD0325901, a selective inhibitor of mitogen-activated protein kinase kinase (MEK), was associated with the occurrence of ocular retinal vein occlusion (RVO) during clinical trials in patients with solid tumors. As previous animal safety studies in rats and dogs did not identify the eye as a target organ of toxicity, this work was conducted to develop a rabbit model of ocular toxicity with PD0325901.. Dutch-Belted rabbits were administered a single intravitreal injection of PD0325901 (0.5 or 1 mg/eye) or saline control, and ophthalmic examinations and retinal angiography were conducted over a 2-week period post-dose. In addition, mechanism of ocular toxicity was further explored in rat with microarray analysis.. PD0325901 treatment produced RVO with retinal vasculature leakage and hemorrhage within 48-h postinjection in Dutch-Belted rabbits. Subsequent retinal detachment and degeneration were also detected on day 8 postinjection. To evaluate the potential mechanism(s) of PD0325901-mediated RVO, male Brown Norway rats were orally administered PD0325901 (45 mg/kg/day) up to 5 days and retinal tissue was collected for gene array analysis. Although PD0325901 did not produce clinical evidence of RVO in rats, retinal gene expression suggested an increased oxidative stress and inflammatory response, endothelium and blood-retinal barrier damage, and prothrombotic effects. Moreover, soluble endothelial protein C receptor (sEPCR), a biomarker for RVO, was elevated in human umbilical vascular endothelial cells (HUVECs) cultured with PD0325901.. This work has developed a rabbit model of PD0325901-induced RVO that may be used to characterize the cellular and molecular mechanisms of this effect in humans.

    Topics: Administration, Oral; Animals; Antigens, CD; Benzamides; Cells, Cultured; Diphenylamine; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Protein C Receptor; Endothelium, Vascular; Female; Fluorescein Angiography; Gene Expression Regulation; Humans; Male; Microarray Analysis; Mitogen-Activated Protein Kinase Kinases; Oxidative Stress; Protein Kinase Inhibitors; Rabbits; Rats; Rats, Inbred BN; Receptors, Cell Surface; Retinal Vein Occlusion; Species Specificity; Umbilical Veins

2009