pci-32765 and Reperfusion-Injury

pci-32765 has been researched along with Reperfusion-Injury* in 2 studies

Other Studies

2 other study(ies) available for pci-32765 and Reperfusion-Injury

ArticleYear
Ibrutinib ameliorates cerebral ischemia/reperfusion injury through autophagy activation and PI3K/Akt/mTOR signaling pathway in diabetic mice.
    Bioengineered, 2021, Volume: 12, Issue:1

    Bruton's tyrosine kinase (BTK) is involved in the diabetogenic process and cerebral ischemic injury. However, it remained unclear whether BTK inhibition has remedial effects on ischemia/reperfusion (I/R) injury complicated with diabetes. We aim to investigate the regulatory role and potential mechanism of ibrutinib, a selective inhibitor of BTK, in cerebral I/R injured diabetic mice. The cytotoxicity and cell vitality tests were performed to evaluate the toxic and protective effects of ibrutinib at different incubating concentrations on normal PC12 cells or which were exposed to high glucose for 24 h, followed by hypoxia and reoxygenation (H/R), respectively. Streptozotocin (STZ) stimulation-induced diabetic mice were subjected to 1 h ischemia and then reperfusion. Then the diabetic mice received different dosages of ibrutinib or vehicle immediately and 24 h after the middle cerebral artery occlusion (MCAO). The behavioral, histopathological, and molecular biological tests were then performed to demonstrate the neuroprotective effects and mechanism in I/R injured diabetic mice. Consequently, Ibrutinib improved the decreased cell viability and attenuated oxidative stress in the high glucose incubated PC12 cells which subjected to H/R injury. In the I/R injured diabetic mice, ibrutinib reduced the cerebral infarct volume, improved neurological deficits, ameliorated pathological changes, and improved autophagy in a slightly dose-dependent manner. Furthermore, the expression of PI3K/AKT/mTOR pathway-related proteins were significantly upregulated by ibrutinib treatment. In summary, our finding collectively demonstrated that Ibrutinib could effectively ameliorate cerebral ischemia/reperfusion injury via ameliorating inflammatory response, oxidative stress, and improving autophagy through PI3K/Akt/mTOR signaling pathway in diabetic mice.

    Topics: Adenine; Animals; Autophagy; Brain Ischemia; Diabetes Mellitus, Experimental; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-akt; Reperfusion Injury; Signal Transduction; TOR Serine-Threonine Kinases

2021
Bruton's Tyrosine Kinase Inhibitor Attenuates Warm Hepatic Ischemia/Reperfusion Injury via Modulation of the NLR Family Pyrin Domain Containing 3 Inflammasome.
    Transplantation proceedings, 2020, Volume: 52, Issue:10

    The NLR family pyrin domain containing 3 (NLRP3) inflammasome is a widely studied inflammasome that plays a critical role in inflammatory responses. Many triggers, including microbial pathogens (ie, bacteria and viruses) and other signals (ie, reactive oxygen species, adenosine triphosphate, urate, silicon, and asbestos), can stimulate the NLRP3 inflammasome. Liver ischemia/reperfusion (I/R) injury is a common pathologic process during liver surgery and shock and can induce severe liver damage. Although its pathogenesis is still unclear, oxidative stress and overproduction of the inflammatory response are likely to contribute to I/R injury. The NLRP3 inflammasome is activated during the I/R process, resulting in further recruitment and activation of caspase-1. Activated caspase-1 cleaves the pro-forms of interleukin-1β and interleukin-18 and results in their maturation, triggering a proinflammatory cytokine cascade and causing liver damage. Bruton's tyrosine kinase is a critical molecule involved in diverse cellular pathways, such as proliferation, apoptosis, inflammation, and angiogenesis. Intrahepatic Bruton's tyrosine kinase is mainly expressed on Kupffer cells and sinusoidal endothelial cells, and the inflammasome is activated in Kupffer cells. Our study found that inhibition of Bruton's tyrosine kinase effectively attenuated liver I/R injury by suppressing activation of the NLRP3 inflammasome in Kupffer cells.

    Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Inflammasomes; Inflammation; Liver; Male; Mice; Mice, Inbred C57BL; NLR Family, Pyrin Domain-Containing 3 Protein; Oxidative Stress; Piperidines; Reactive Oxygen Species; Reperfusion Injury

2020