pci-32765 has been researched along with Psoriasis* in 2 studies
2 other study(ies) available for pci-32765 and Psoriasis
Article | Year |
---|---|
Bruton's tyrosine kinase inhibitor suppresses imiquimod-induced psoriasis-like inflammation in mice through regulation of IL-23/IL-17A in innate immune cells.
Psoriasis is an unchecked chronic inflammation characterized by thick, erythematous, and scaly plaques on the skin. The role of innate immune cells in the pathogenesis of psoriasis is well documented. Bruton's tyrosine kinase (BTK) has been reported to execute important signaling functions in innate immune cells such as dendritic cells (DCs) and gamma delta T cells. However, whether inhibition of BTK would lead to modulation of innate immune function in the context of psoriatic inflammation remains largely unexplored. In the present study, we investigated the effect of selective BTK inhibitor, PCI-32765 on inflammatory signaling in CD11c + DCs and gamma delta T cells in imiquimod (IMQ)-induced mouse model of psoriasis-like inflammation. Our results show that IMQ treatment led to induction of p-BTK expression along with concomitant increase in inflammatory cytokines (IL-23, TNF-α) in CD11c + DCs in the skin. Preventive treatment with BTK inhibitor led to significant reversal in IMQ-induced inflammatory changes in CD11c + DCs of skin. Further, there was a significant decrease in dermal IL-17A levels and IL-17A + γδ + T cells after treatment with BTK inhibitor. Furthermore, short treatment of back skin with IMQ led to upregulated expression of p-BTK along with inflammatory cytokines in CD11c + DCs (IL-23, TNF-α) and IL-17A in γδ + T cells which were reversed by BTK inhibitor. Overall, our study proposes that BTK signaling serves a crucial signaling function in innate immune cells in the context of psoriatic inflammation in mice. Therefore, BTK might be a promising therapeutic target to treat psoriatic inflammation. Topics: Adenine; Agammaglobulinaemia Tyrosine Kinase; Animals; Dendritic Cells; Disease Models, Animal; Humans; Imiquimod; Immunity, Innate; Interleukin-17; Interleukin-23; Intraepithelial Lymphocytes; Male; Mice; Piperidines; Protein Kinase Inhibitors; Psoriasis; Pyrazoles; Pyrimidines; Signal Transduction; Skin | 2020 |
Therapeutic treatment with Ibrutinib attenuates imiquimod-induced psoriasis-like inflammation in mice through downregulation of oxidative and inflammatory mediators in neutrophils and dendritic cells.
Psoriasis is clinically characterized by well-demarcated silvery plaques which may appear on the extremities, scalp, and sacral area. The multidimensional interactions among innate immune cells [neutrophils and dendritic cells (DCs)], adaptive immune cells and skin resident cells result in characteristic features of psoriatic inflammation such as acanthosis, hyperkeratosis, and parakeratosis. Tec family kinases are involved in the pathogenesis of several inflammatory diseases. One of them is Bruton's tyrosine kinase (BTK) which is reported to carry out inflammatory and oxidative signaling in neutrophils and DCs. Effect of BTK inhibitor with regard to psoriatic inflammation has not been explored previously especially in a therapeutic setting. In the current investigation, effect of BTK inhibitor, Ibrutinib on oxidative/inflammatory signaling in dermal/splenic neutrophils [phosphorylated BTK (p-BTK), inducible nitric oxide synthase (iNOS), nitrotyrosine], CD11c + DCs (p-BTK, iNOS, nitrotyrosine, MCP-1, TNF-α) and enzymatic antioxidants [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR)] in imiquimod (IMQ)-induced psoriatic inflammation was evaluated using therapeutic mode. Our results show that IMQ treatment led to induction of p-BTK expression along with concomitant increase in oxidative stress in neutrophils, and CD11c + DCs in skin/periphery. Therapeutic treatment with Ibrutinib caused attenuation of IMQ-induced oxidative stress in CD11c + DCs and neutrophils. Further there were dysregulations in antioxidants enzymes (SOD/GPx/GR) in the skin of IMQ-treated mice, which were corrected by Ibrutinib. In short, our study reveals that BTK signaling in neutrophils and CD11c + DCs upregulates oxidative stress which is concomitant with psoriatic inflammation in mice. Ibrutinib attenuates psoriasis inflammation through downregulation of oxidative stress in these innate immune cells. Topics: Adenine; Animals; BALB 3T3 Cells; Dendritic Cells; Down-Regulation; Imiquimod; Inflammation Mediators; Male; Mice; Neutrophils; Oxidation-Reduction; Oxidative Stress; Peroxidase; Piperidines; Psoriasis; Signal Transduction; Skin | 2020 |