pci-32765 and Alzheimer-Disease

pci-32765 has been researched along with Alzheimer-Disease* in 2 studies

Other Studies

2 other study(ies) available for pci-32765 and Alzheimer-Disease

ArticleYear
Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer's disease.
    Aging cell, 2021, Volume: 20, Issue:3

    We previously demonstrated that ibrutinib modulates LPS-induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aβ plaque levels by promoting the non-amyloidogenic pathway of APP cleavage, decreased Aβ-induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin-dependent kinase-5 (p-CDK5). Importantly, tau-mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long-term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short- and long-term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3-kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD-associated pathology and cognitive function and may be a potential therapy for AD.

    Topics: Adenine; Alzheimer Disease; Amyloid beta-Peptides; Animals; Brain; Cognition; Cyclin-Dependent Kinase 5; Cytokines; Dendritic Spines; Disease Models, Animal; Down-Regulation; Gliosis; Inflammation; Inflammation Mediators; Memory, Long-Term; Mice, Transgenic; Neurogenesis; Neuroglia; Phosphorylation; Piperidines; Plaque, Amyloid; tau Proteins

2021
Inhibition of Bruton's Tyrosine Kinase Modulates Microglial Phagocytosis: Therapeutic Implications for Alzheimer's Disease.
    Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 2019, Volume: 14, Issue:3

    Bruton's tyrosine kinase (BTK), a critical component of B cell receptor signaling, has recently been implicated in regulation of the peripheral innate immune response. However, the role of BTK in microglia, the resident innate immune cells of the central nervous system, and its involvement in the pathobiology of neurodegenerative disease has not been explored. Here we found that BTK is a key regulator of microglial phagocytosis. Using potent BTK inhibitors and small interfering RNA (siRNA) against BTK, we observed that blockade of BTK activity decreased activation of phospholipase gamma 2, a recently identified genetic risk factor in Alzheimer's disease (AD), and reduced phagocytosis in rodent microglia and human monocyte-derived macrophages. Inhibition of BTK signaling also decreased microglial uptake of synaptosomes but did not have major impacts on other key microglial functions such as migration and cytokine release. Similarly, blocking BTK function ex vivo in acute brain slices reduced microglial phagocytosis and maintained numbers of resting microglia. In brain tissues from the 5xFAD mouse model of AD, levels of microglial BTK were elevated while in two gene expression datasets of post-mortem AD patient brain tissues, upregulation of BTK transcript was observed. Our study provides novel insights into the role of BTK in regulating microglial phagocytosis and uptake of synaptic structures and suggests that inhibiting microglial BTK may improve cognition in AD by preventing microglial activation and synaptic loss. Graphical Abstract Microglial-mediated synapse loss has been implicated in AD pathogenesis. Inhibition of BTK decreases activation of PLCγ2, a genetic risk factor in AD, and reduces microglial phagocytosis and uptake of synaptic structures. As such BTK inhibition may represent a therapeutic route to prevent microglial activation and synapse loss in AD.

    Topics: Acrylamides; Adenine; Agammaglobulinaemia Tyrosine Kinase; Alzheimer Disease; Animals; Brain; Cell Line; Cell Movement; Cytokines; Datasets as Topic; Enzyme Induction; Gene Expression Profiling; Humans; Mice; Mice, Inbred C57BL; Microglia; Nerve Tissue Proteins; Phagocytosis; Piperidines; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Rats; Rats, Sprague-Dawley; RNA Interference; RNA, Small Interfering

2019