patchouli-alcohol and Irritable-Bowel-Syndrome

patchouli-alcohol has been researched along with Irritable-Bowel-Syndrome* in 1 studies

Other Studies

1 other study(ies) available for patchouli-alcohol and Irritable-Bowel-Syndrome

ArticleYear
The Effects of Patchouli Alcohol on Diarrhea-Predominant Irritable Bowel Syndrome are Correlated with Phenotypic Plasticity in Myenteric Neurons and the Targeted Regulation of Myosin Va.
    The American journal of Chinese medicine, 2022, Volume: 50, Issue:7

    Patchouli alcohol (PA) has been widely used for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) in traditional Chinese medicine, and the related mechanism remains to be fully understood. Our previous study has indicated that PA significantly reduced visceral sensitivity and defecation area in IBS-D rats. In this study, we prepared an IBS-D rat model and observed the dynamic intestinal motility and colonic longitudinal muscle and myenteric plexus (LMMP) neurons, as well as their subtypes at D14, D21, and D28. After PA administration, we observed the effects on the changes in intestinal motility, colonic LMMP neurons, and LMMP Myosin Va in IBS-D rats and their co-localization with inhibitory neurotransmitter-related proteins. The results indicated that PA treatment could alleviate IBS-D symptoms, regulate the abnormal expression of LMMP neurons, increase Myosin Va expression, up-regulate co-localization levels of Myosin Va with neuronal nitric oxide synthase (nNOS), and promote co-localization levels of Myosin Va with vasoactive intestinal polypeptide (VIP). In conclusion, this study demonstrated the neuropathic alterations in the colon of chronic restraint stress-induced IBS-D rat model. PA reversed the neuropathological alteration by affecting the transport process of nNOS and VIP vesicles via Myosin Va and the function of LMMP inhibitory neurons, and these effects were related to the mechanism of enteric nervous system (ENS) remodeling.

    Topics: Adaptation, Physiological; Animals; Diarrhea; Disease Models, Animal; Irritable Bowel Syndrome; Myosins; Neurons; Rats

2022