pasireotide and Retinal-Diseases

pasireotide has been researched along with Retinal-Diseases* in 2 studies

Other Studies

2 other study(ies) available for pasireotide and Retinal-Diseases

ArticleYear
Pasireotide (SOM230) protects the retina in animal models of ischemia induced retinopathies.
    Experimental eye research, 2012, Volume: 103

    The neuropeptide somatostatin and selective analogs for the sst(2/5) receptor subtypes provided neuroprotection against retinal chemical ischemia ex vivo and AMPA [(RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide] induced retinal toxicity in vivo, when employed in micromolar concentrations (Mastrodimou et al., 2005; Kiagiadaki and Thermos, 2008). The aim of the present study was to investigate the neuroprotective properties of a new metabolically stable agent pasireotide (SOM230) in the above mentioned retinal models of ischemia. Adult Sprague Dawley (250-350 g) rats were employed. For the ex vivo experiments, retinal eye cups were incubated with PBS or the chemical ischemia mixture [iodoacetic acid (5 mM)/sodium cyanide (25 mM)] in the absence or presence of SOM230 (10(-7)-10(-5) M) alone or in the presence of the sst(2) antagonist CYN-154806 (10(-7) or 10(-5) M). In the in vivo model, the animals received intravitreally: PBS (50 mM), AMPA (42 nmol/eye) or AMPA (42 nmol) in combination with SOM230 (10(-7)-10(-5) M). Immunohistochemistry studies using antisera against bNOS, a marker for brain/neuronal NOS containing amacrine cells, protein kinase C (PKC) a marker for rod bipolar cells, and TUNEL studies in conjunction with FACS analysis were employed to examine retinal cell loss and protection. Chemical ischemia led to a loss of bNOS and PKC immunoreactivity which was reversed by SOM230. Partial and full protection of bNOS and PKC immunoreactive neurons, respectively, was observed even at the low concentration of 10(-7) M. The neuroprotective actions of SOM230 (10(-7) or 10(-5) M) were reversed by CYN-154806 (10(-7) or 10(-5) M, respectively). Similarly, SOM230 (10(-7), 10(-6), 10(-5) M) provided neuroprotection in the in vivo model. The dose of 10(-7) M prevented the loss of the bNOS cells and provided almost full protection. These data were substantiated by TUNEL staining and fluorescence-activated cell sorting (FACS) analysis. SOM230 appears very efficacious in its neuroprotective properties in both models of retinal ischemia affording neuroprotection at the concentration or dose of 100 nM. These data suggest that SOM230 might represent a useful pharmacological compound for the treatment of retinal disease.

    Topics: Amacrine Cells; Animals; Apoptosis; Disease Models, Animal; Flow Cytometry; Fluorescent Antibody Technique, Indirect; In Situ Nick-End Labeling; Neuroprotective Agents; Nitric Oxide Synthase Type I; Oligopeptides; Protein Kinase C; Rats; Rats, Sprague-Dawley; Receptors, Somatostatin; Reperfusion Injury; Retinal Diseases; Somatostatin

2012
Modulation of the neuronal response to ischaemia by somatostatin analogues in wild-type and knock-out mouse retinas.
    Journal of neurochemistry, 2008, Volume: 106, Issue:5

    Somatostatin acts at five G protein-coupled receptors, sst(1)-sst(5). In mouse ischaemic retinas, the over-expression of sst(2) (as in sst(1) knock-out mice) results in the reduction of cell death and glutamate release. In this study, we reported that, in wild-type retinas, somatostatin, the multireceptor ligand pasireotide and the sst(2) agonist octreotide decreased ischaemia-induced cell death and that octreotide also decreased glutamate release. In contrast, cell death was increased by blocking sst(2) with cyanamide. In sst(2) over-expressing ischaemic retinas, somatostatin analogues increased cell death, and octreotide also increased glutamate release. To explain this reversal of the anti-ischaemic effect of somatostatin agonists in the presence of sst(2) over-expression, we tested sst(2) desensitisation because of internalisation or altered receptor function. We observed that (i) sst(2) was not internalised, (ii) among G protein-coupled receptor kinases (GRKs) and regulators of G protein signalling (RGSs), GRK1 and RGS1 expression increased following ischaemia, (iii) both GRK1 and RGS1 were down-regulated by octreotide in wild-type ischaemic retinas, (iv) octreotide down-regulated GRK1 but not RGS1 in sst(2) over-expressing ischaemic retinas. These results demonstrate that sst(2) activation protects against retinal ischaemia. However, in the presence of sst(2) over-expression sst(2) is functionally desensitised by agonists, possibly because of sustained RGS1 levels.

    Topics: Animals; Brain Ischemia; Cell Death; Cyanamide; Female; G-Protein-Coupled Receptor Kinase 1; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nerve Degeneration; Neurons; Octreotide; Oligopeptides; Receptors, Somatostatin; Retina; Retinal Diseases; RGS Proteins; Somatostatin

2008