papa-nonoate and Necrosis
papa-nonoate has been researched along with Necrosis* in 1 studies
Other Studies
1 other study(ies) available for papa-nonoate and Necrosis
Article | Year |
---|---|
Two distinct mechanisms of nitric oxide-mediated neuronal cell death show thiol dependency.
To better understand the mechanism(s) underlying nitric oxide (. NO)-mediated toxicity, in the presence and absence of concomitant oxidant exposure, postmitotic terminally differentiated NT2N cells, which are incapable of producing. NO, were exposed to PAPA-NONOate (PAPA/NO) and 3-morpholinosydnonimine (SIN-1). Exposure to SIN-1, which generated peroxynitrite in the range of 25-750 nM/min, produced a concentration- and time-dependent delayed cell death. In contrast, a critical threshold concentration (>440 nM/min) was required for. NO to produce significant cell injury. Examination of cells by electron microscopy shows a largely necrotic injury after peroxynitrite exposure but mainly apoptotic-like morphology after. NO exposure. Cellular levels of reduced thiols correlated with cell death, and pretreatment with N-acetylcysteine (NAC) fully protected from cell death in either PAPA/NO or SIN-1 exposure. NAC given within the first 3 h posttreatment further delayed cell death and increased the intracellular thiol level in SIN-1 but not. NO-exposed cells. Cell injury from. NO was independent of cGMP, caspases, and superoxide or peroxynitrite formation. Overall, exposure of non-. NO-producing cells to. NO or peroxynitrite results in delayed cell death, which, although occurring by different mechanisms, appears to be mediated by the loss of intracellular redox balance. Topics: Acetylcysteine; Animals; Cell Death; Cell Differentiation; Cell Line; Cell Survival; Cyclic GMP; Hydrazines; Molsidomine; Necrosis; Neurons; Nitrates; Nitric Oxide; Nitric Oxide Donors; Oxidants; Sulfhydryl Compounds | 2000 |