panobinostat has been researched along with Cell-Transformation--Neoplastic* in 3 studies
3 other study(ies) available for panobinostat and Cell-Transformation--Neoplastic
Article | Year |
---|---|
Hmga2 translocation induced in skin tumorigenesis.
Hmga2 protein, a transcription factor involved in chromatin architecture, is expressed chiefly during development, where it has many key biological functions. When expressed in adult tissues from in various organs, Hmga2 is always related to cancer development. The role of Hmga2 in skin tumorigenesis is, however, not yet understood. We demonstrated that Hmga2 can be found in non-transformed epidermis, specifically located to the membrane of keratinocytes (KCs) in epidermis. Ex vivo culture of KCs and development of skin carcinomas in DMBA and TPA mouse models was associated with translocation of the Hmga2 protein from the membrane into the nucleus, where Hmga2 induced its own expression by binding to the Hmga2 promoter. Panobinostat, an HDAC inhibitor, downregulated Hmga2 expression by preventing Hmga2 to bind its own promoter, and thus inhibiting Hmga2 promoter activity. Hmga2 translocation to the nucleus could in part be prevented by an inhibitor for ROCK1. Our findings demonstrate that upon program of benign papilloma to malignant cSCC of skin tumorigenesis, Hmga2 translocates in a ROCK-dependent manner from the membrane to the nucleus, where it serves as an autoregulatory transcription factor, causing cell transformation. Topics: Animals; Cell Line; Cell Proliferation; Cell Transformation, Neoplastic; Female; Gene Expression; HMGA2 Protein; Humans; Hydroxamic Acids; Indoles; Keratinocytes; Mice; Panobinostat; Protein Transport; rho-Associated Kinases; Skin Neoplasms; Transcription, Genetic | 2017 |
Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin.
The aim of this study is to investigate the efficacy of combining a histone deacetylase inhibitor (LBH589) and a breast cancer stem cells (BCSC)-targeting agent (salinomycin) as a novel combination therapy for triple-negative breast cancer (TNBC). We performed in vitro studies using the TNBC cell lines to examine the combined effect. We used the mammosphere and ALDEFLUOR assays to estimate BCSC self-renewal capacity and distribution of BCSCs, respectively. Synergistic analysis was performed using CalcuSyn software. For in vivo studies, aldehyde dehydrogenase 1 ALDH1-positive cells were injected into non-obese diabetic/severe combined immunodeficiency gamma (NSG) mice. After tumor formation, mice were treated with LBH589, salinomycin, or in combination. In a second mouse model, HCC1937 cells were first treated with each treatment and then injected into NSG mice. For mechanistic analysis, immunohistochemistry and Western blot analysis were performed using cell and tumor samples. HCC1937 cells displayed BCSC properties including self-renewal capacity, an ALDH1-positive cell population, and the ability to form tumors. Treatment of HCC1937 cells with LBH589 and salinomycin had a potent synergistic effect inhibiting TNBC cell proliferation, ALDH1-positive cells, and mammosphere growth. In xenograft mouse models treated with LBH589 and salinomycin, the drug combination effectively and synergistically inhibited tumor growth of ALDH1-positive cells. The drug combination exerted its effects by inducing apoptosis, arresting the cell cycle, and regulating epithelial-mesenchymal transition (EMT). Combination of LBH589 and salinomycin has a synergistic inhibitory effect on TNBC BCSCs by inducing apoptosis, arresting the cell cycle, and regulating EMT; with no apparent associated severe toxicity. This drug combination could therefore offer a new targeted therapeutic strategy for TNBC and warrants further clinical study in patients with TNBC. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Self Renewal; Cell Transformation, Neoplastic; Disease Models, Animal; Drug Synergism; Epithelial-Mesenchymal Transition; Female; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Indoles; Mice; Neoplastic Stem Cells; Panobinostat; Pyrans; Triple Negative Breast Neoplasms; Tumor Burden; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2015 |
Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat.
Of the more than one million global cases of breast cancer diagnosed each year, approximately fifteen percent are characterized as triple-negative, lacking the estrogen, progesterone, and Her2/neu receptors. Lack of effective therapies, younger age at onset, and early metastatic spread have contributed to the poor prognoses and outcomes associated with these malignancies. Here, we investigate the ability of the histone deacetylase inhibitor panobinostat (LBH589) to selectively target triple-negative breast cancer (TNBC) cell proliferation and survival in vitro and tumorigenesis in vivo.. TNBC cell lines MDA-MB-157, MDA-MB-231, MDA-MB-468, and BT-549 were treated with nanomolar (nM) quantities of panobinostat. Relevant histone acetylation was verified by flow cytometry and immunofluorescent imaging. Assays for trypan blue viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) proliferation, and DNA fragmentation were used to evaluate overall cellular toxicity. Changes in cell cycle progression were assessed with propidium iodide flow cytometry. Additionally, qPCR arrays were used to probe MDA-MB-231 cells for panobinostat-induced changes in cancer biomarkers and signaling pathways. Orthotopic MDA-MB-231 and BT-549 mouse xenograft models were used to assess the effects of panobinostat on tumorigenesis. Lastly, flow cytometry, ELISA, and immunohistochemical staining were applied to detect changes in cadherin-1, E-cadherin (CDH1) protein expression and the results paired with confocal microscopy in order to examine changes in cell morphology.. Panobinostat treatment increased histone acetylation, decreased cell proliferation and survival, and blocked cell cycle progression at G2/M with a concurrent decrease in S phase in all TNBC cell lines. Treatment also resulted in apoptosis induction at 24 hours in all lines except the MDA-MB-468 cell line. MDA-MB-231 and BT-549 tumor formation was significantly inhibited by panobinostat (10 mg/kg/day) in mice. Additionally, panobinostat up-regulated CDH1 protein in vitro and in vivo and induced cell morphology changes in MDA-MB-231 cells consistent with reversal of the mesenchymal phenotype.. This study revealed that panobinostat is overtly toxic to TNBC cells in vitro and decreases tumorigenesis in vivo. Additionally, treatment up-regulated anti-proliferative, tumor suppressor, and epithelial marker genes in MDA-MB-231 cells and initiated a partial reversal of the epithelial-to-mesenchymal transition. Our results demonstrate a potential therapeutic role of panobinostat in targeting aggressive triple-negative breast cancer cell types. Topics: Animals; Apoptosis; Breast Neoplasms; Cadherins; Cdh1 Proteins; Cell Cycle; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Epithelial-Mesenchymal Transition; Female; Gene Expression; Histone Deacetylase Inhibitors; Histones; Humans; Hydroxamic Acids; Indoles; Mice; Mice, SCID; Panobinostat; Random Allocation; Receptor, ErbB-2; Receptors, Estrogen; Receptors, Progesterone; Signal Transduction; Up-Regulation; Xenograft Model Antitumor Assays | 2012 |