panduratin-a and Periodontal-Diseases

panduratin-a has been researched along with Periodontal-Diseases* in 1 studies

Other Studies

1 other study(ies) available for panduratin-a and Periodontal-Diseases

ArticleYear
Inhibitory Effects of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Lipopolysaccharide-Induced Periodontal Inflammation and Alveolar Bone Loss in Rats.
    Journal of medicinal food, 2018, Volume: 21, Issue:10

    Periodontitis, an inflammatory disease of the gingival tissue, triggered by microbial-derived elements, such as lipopolysaccharide (LPS), collapses the periodontal tissues and resorbs the alveolar bone. This study evaluated the inhibitory effects of standardized Boesenbergia pandurata extract (BPE) and panduratin A (PAN) on periodontitis-induced inflammation and alveolar bone loss. Sprague-Dawley rats with LPS-induced periodontitis were orally administered BPE (50 and 200 mg/kg/day) and PAN (20 mg/kg/day) for 8 days. Histological analysis revealed that BPE- and PAN-administered groups showed decreased cell infiltration and alveolar bone resorption. Furthermore, the BPE and PAN significantly alleviated the mRNA and protein expression levels of nuclear factor kappa B (NF-κB), interleukin-1β, matrix metalloproteinase (MMP)-2, and MMP-8. BPE and PAN also inhibited the expression of nuclear factor of activated T cells, cytoplasmic 1, c-Fos, and ostoclastogenesis-related enzymes, including cathepsin K and tartrate-resistant acid phosphatase (ALP). BPE and PAN not only upregulated the osteoblastogenesis-associated markers, such as collagen type I (COL1A1) and ALP, but also increased the ratio of osteoprotegerin to receptor activator of NF-κB ligand. Collectively, BPE and PAN efficiently prevent destruction of periodontal tissues and stimulating the loss of alveolar bone tissues, strongly indicative of their potential as natural antiperiodontitis agents.

    Topics: Alveolar Bone Loss; Animals; Chalcones; Collagen Type I; Humans; Interleukin-1beta; Lipopolysaccharides; Male; Matrix Metalloproteinase 2; NF-kappa B; Osteoprotegerin; Periodontal Diseases; Plant Extracts; Rats; Rats, Sprague-Dawley; Zingiberaceae

2018