panduratin-a has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for panduratin-a and Disease-Models--Animal
Article | Year |
---|---|
Pharmacological Effects of Panduratin A on Renal Cyst Development in In Vitro and In Vivo Models of Polycystic Kidney Disease.
Renal cyst expansion in polycystic kidney disease (PKD) involves abnormalities in both cyst-lining-cell proliferation and fluid accumulation. Suppression of these processes may retard the progression of PKD. Evidence suggests that the activation of 5' AMP-activated protein kinase (AMPK) inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride secretion, leading to reduced progression of PKD. Here we investigated the pharmacological effects of panduratin A, a bioactive compound known as an AMPK activator, on CFTR-mediated chloride secretion and renal cyst development using in vitro and animal models of PKD. We demonstrated that AMPK was activated in immortalized normal renal cells and autosomal dominant polycystic kidney disease (ADPKD) cells following treatment with panduratin A. Treatment with panduratin A reduced the number of renal cyst colonies corresponding with a decrease in cell proliferation and phosphorylated p70/S6K, a downstream target of mTOR signaling. Additionally, panduratin A slowed cyst expansion via inhibition of the protein expression and transport function of CFTR. In heterozygous Han:Sprague-Dawley (Cy/+) rats, an animal model of PKD, intraperitoneal administration of panduratin A (25 mg/kg BW) for 5 weeks significantly decreased the kidney weight per body weight ratios and the cystic index. Panduratin A also reduced collagen deposition in renal tissue. Intraperitoneal administration of panduratin A caused abdominal bleeding and reduced body weight. However, 25 mg/kg BW of panduratin A via oral administration in the PCK rats, another non-orthologous PKD model, showed a significant decrease in the cystic index without severe adverse effects, indicating that the route of administration is critical in preventing adverse effects while still slowing disease progression. These findings reveal that panduratin A might hold therapeutic properties for the treatment of PKD. Topics: AMP-Activated Protein Kinases; Animals; Body Weight; Cell Proliferation; Chalcones; Chlorides; Cystic Fibrosis Transmembrane Conductance Regulator; Cysts; Disease Models, Animal; Female; Humans; Kidney; Male; Polycystic Kidney Diseases; Rats; Rats, Sprague-Dawley | 2022 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |