pafuramidine has been researched along with Kidney-Diseases* in 2 studies
1 trial(s) available for pafuramidine and Kidney-Diseases
Article | Year |
---|---|
Efficacy and Safety of Pafuramidine versus Pentamidine Maleate for Treatment of First Stage Sleeping Sickness in a Randomized, Comparator-Controlled, International Phase 3 Clinical Trial.
Sleeping sickness (human African trypanosomiasis [HAT]) is a neglected tropical disease with limited treatment options that currently require parenteral administration. In previous studies, orally administered pafuramidine was well tolerated in healthy patients (for up to 21 days) and stage 1 HAT patients (for up to 10 days), and demonstrated efficacy comparable to pentamidine.. This was a Phase 3, multi-center, randomized, open-label, parallel-group, active control study where 273 male and female patients with first stage Trypanosoma brucei gambiense HAT were treated at six sites: one trypanosomiasis reference center in Angola, one hospital in South Sudan, and four hospitals in the Democratic Republic of the Congo between August 2005 and September 2009 to support the registration of pafuramidine for treatment of first stage HAT in collaboration with the United States Food and Drug Administration. Patients were treated with either 100 mg of pafuramidine orally twice a day for 10 days or 4 mg/kg pentamidine intramuscularly once daily for 7 days to assess the efficacy and safety of pafuramidine versus pentamidine. Pregnant and lactating women as well as adolescents were included. The primary efficacy endpoint was the combined rate of clinical and parasitological cure at 12 months. The primary safety outcome was the frequency and severity of adverse events. The study was registered on the International Clinical Trials Registry Platform at www.clinicaltrials.gov with the number ISRCTN85534673.. The overall cure rate at 12 months was 89% in the pafuramidine group and 95% in the pentamidine group; pafuramidine was non-inferior to pentamidine as the upper bound of the 95% confidence interval did not exceed 15%. The safety profile of pafuramidine was superior to pentamidine; however, 3 patients in the pafuramidine group had glomerulonephritis or nephropathy approximately 8 weeks post-treatment. Two of these events were judged as possibly related to pafuramidine. Despite good tolerability observed in preceding studies, the development program for pafuramidine was discontinued due to delayed post-treatment toxicity. Topics: Administration, Oral; Adolescent; Adult; Aged; Angola; Benzamidines; Child; Democratic Republic of the Congo; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Injections, Intramuscular; Kidney Diseases; Male; Middle Aged; Pentamidine; Pregnancy; Sudan; Treatment Outcome; Trypanosoma brucei gambiense; Trypanosomiasis, African; Young Adult | 2016 |
1 other study(ies) available for pafuramidine and Kidney-Diseases
Article | Year |
---|---|
A mouse diversity panel approach reveals the potential for clinical kidney injury due to DB289 not predicted by classical rodent models.
DB289 is the first oral drug shown in clinical trials to have efficacy in treating African trypanosomiasis (African sleeping sickness). Mild liver toxicity was noted but was not treatment limiting. However, development of DB289 was terminated when several treated subjects developed severe kidney injury, a liability not predicted from preclinical testing. We tested the hypothesis that the kidney safety liability of DB289 would be detected in a mouse diversity panel (MDP) comprised of 34 genetically diverse inbred mouse strains. MDP mice received 10 days of oral treatment with DB289 or vehicle and classical renal biomarkers blood urea nitrogen (BUN) and serum creatinine (sCr), as well as urine biomarkers of kidney injury were measured. While BUN and sCr remained within reference ranges, marked elevations were observed for kidney injury molecule-1 (KIM-1) in the urine of sensitive mouse strains. KIM-1 elevations were not always coincident with elevations in alanine aminotransferase (ALT), suggesting that renal injury was not linked to hepatic injury. Genome-wide association analyses of KIM-1 elevations indicated that genes participating in cholesterol and lipid biosynthesis and transport, oxidative stress, and cytokine release may play a role in DB289 renal injury. Taken together, the data resulting from this study highlight the utility of using an MDP to predict clinically relevant toxicities, to identify relevant toxicity biomarkers that may translate into the clinic, and to identify potential mechanisms underlying toxicities. In addition, the sensitive mouse strains identified in this study may be useful in screening next-in-class compounds for renal injury. Topics: Administration, Oral; Animals; Benzamidines; Biomarkers; Blood Urea Nitrogen; Chemical and Drug Induced Liver Injury; Creatinine; Female; Genetic Markers; Genetic Predisposition to Disease; Genome-Wide Association Study; Hepatitis A Virus Cellular Receptor 1; Kidney; Kidney Diseases; Male; Membrane Proteins; Mice; Risk Assessment; Species Specificity; Toxicity Tests; Trypanocidal Agents | 2012 |