pafuramidine has been researched along with Drug-Related-Side-Effects-and-Adverse-Reactions* in 4 studies
2 trial(s) available for pafuramidine and Drug-Related-Side-Effects-and-Adverse-Reactions
Article | Year |
---|---|
Efficacy, Safety, and Dose of Pafuramidine, a New Oral Drug for Treatment of First Stage Sleeping Sickness, in a Phase 2a Clinical Study and Phase 2b Randomized Clinical Studies.
Sleeping sickness (human African trypanosomiasis [HAT]) is caused by protozoan parasites and characterized by a chronic progressive course, which may last up to several years before death. We conducted two Phase 2 studies to determine the efficacy and safety of oral pafuramidine in African patients with first stage HAT.. The Phase 2a study was an open-label, non-controlled, proof-of-concept study where 32 patients were treated with 100 mg of pafuramidine orally twice a day (BID) for 5 days at two trypanosomiasis reference centers (Angola and the Democratic Republic of the Congo [DRC]) between August 2001 and November 2004. The Phase 2b study compared pafuramidine in 41 patients versus standard pentamidine therapy in 40 patients. The Phase 2b study was open-label, parallel-group, controlled, randomized, and conducted at two sites in the DRC between April 2003 and February 2007. The Phase 2b study was then amended to add an open-label sequence (Phase 2b-2), where 30 patients received pafuramidine for 10 days. The primary efficacy endpoint was parasitologic cure at 24 hours (Phase 2a) or 3 months (Phase 2b) after treatment completion. The primary safety outcome was the rate of occurrence of World Health Organization Toxicity Scale Grade 3 or higher adverse events. All subjects provided written informed consent.. Pafuramidine for the treatment of first stage HAT was comparable in efficacy to pentamidine after 10 days of dosing. The cure rates 3 months post-treatment were 79% in the 5-day pafuramidine, 100% in the 7-day pentamidine, and 93% in the 10-day pafuramidine groups. In Phase 2b, the percentage of patients with at least 1 treatment-emergent adverse event was notably higher after pentamidine treatment (93%) than pafuramidine treatment for 5 days (25%) and 10 days (57%). These results support continuation of the development program for pafuramidine into Phase 3. Topics: Administration, Oral; Adolescent; Adult; Angola; Antiprotozoal Agents; Benzamidines; Democratic Republic of the Congo; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Male; Middle Aged; Pentamidine; Treatment Outcome; Trypanosomiasis, African; Young Adult | 2016 |
Efficacy and Safety of Pafuramidine versus Pentamidine Maleate for Treatment of First Stage Sleeping Sickness in a Randomized, Comparator-Controlled, International Phase 3 Clinical Trial.
Sleeping sickness (human African trypanosomiasis [HAT]) is a neglected tropical disease with limited treatment options that currently require parenteral administration. In previous studies, orally administered pafuramidine was well tolerated in healthy patients (for up to 21 days) and stage 1 HAT patients (for up to 10 days), and demonstrated efficacy comparable to pentamidine.. This was a Phase 3, multi-center, randomized, open-label, parallel-group, active control study where 273 male and female patients with first stage Trypanosoma brucei gambiense HAT were treated at six sites: one trypanosomiasis reference center in Angola, one hospital in South Sudan, and four hospitals in the Democratic Republic of the Congo between August 2005 and September 2009 to support the registration of pafuramidine for treatment of first stage HAT in collaboration with the United States Food and Drug Administration. Patients were treated with either 100 mg of pafuramidine orally twice a day for 10 days or 4 mg/kg pentamidine intramuscularly once daily for 7 days to assess the efficacy and safety of pafuramidine versus pentamidine. Pregnant and lactating women as well as adolescents were included. The primary efficacy endpoint was the combined rate of clinical and parasitological cure at 12 months. The primary safety outcome was the frequency and severity of adverse events. The study was registered on the International Clinical Trials Registry Platform at www.clinicaltrials.gov with the number ISRCTN85534673.. The overall cure rate at 12 months was 89% in the pafuramidine group and 95% in the pentamidine group; pafuramidine was non-inferior to pentamidine as the upper bound of the 95% confidence interval did not exceed 15%. The safety profile of pafuramidine was superior to pentamidine; however, 3 patients in the pafuramidine group had glomerulonephritis or nephropathy approximately 8 weeks post-treatment. Two of these events were judged as possibly related to pafuramidine. Despite good tolerability observed in preceding studies, the development program for pafuramidine was discontinued due to delayed post-treatment toxicity. Topics: Administration, Oral; Adolescent; Adult; Aged; Angola; Benzamidines; Child; Democratic Republic of the Congo; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Injections, Intramuscular; Kidney Diseases; Male; Middle Aged; Pentamidine; Pregnancy; Sudan; Treatment Outcome; Trypanosoma brucei gambiense; Trypanosomiasis, African; Young Adult | 2016 |
2 other study(ies) available for pafuramidine and Drug-Related-Side-Effects-and-Adverse-Reactions
Article | Year |
---|---|
FDA-approved drug labeling for the study of drug-induced liver injury.
Drug-induced liver injury (DILI) is a leading cause of drugs failing during clinical trials and being withdrawn from the market. Comparative analysis of drugs based on their DILI potential is an effective approach to discover key DILI mechanisms and risk factors. However, assessing the DILI potential of a drug is a challenge with no existing consensus methods. We proposed a systematic classification scheme using FDA-approved drug labeling to assess the DILI potential of drugs, which yielded a benchmark dataset with 287 drugs representing a wide range of therapeutic categories and daily dosage amounts. The method is transparent and reproducible with a potential to serve as a common practice to study the DILI of marketed drugs for supporting drug discovery and biomarker development. Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration | 2011 |
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60-70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the "Rule of Three" was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity. Topics: Animals; Anti-Infective Agents; Anti-Inflammatory Agents; Chemical and Drug Induced Liver Injury; Databases, Factual; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Models, Biological; Predictive Value of Tests | 2011 |