paclitaxel has been researched along with Nasopharyngeal Carcinoma in 51 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 37 (72.55) | 24.3611 |
2020's | 14 (27.45) | 2.80 |
Authors | Studies |
---|---|
Chen, Y; Ding, X; Feng, G; Huang, Y; Lin, L; Ma, S; Wang, R; Xu, R; Yang, Y; Zhang, C; Zhang, L; Zhou, T | 1 |
Cao, KJ; Chen, MY; Chen, QY; Chen, ZJ; Guo, L; Guo, X; Hu, D; Hua, YJ; Huang, PY; Ke, LR; Li, WZ; Liang, H; Liu, GY; Liu, T; Lu, N; Luo, DH; Lv, SH; Lv, X; Mai, HQ; Mo, HY; Qian, CN; Qiu, F; Sun, R; Tang, LQ; Tang, WB; Tong, LH; Wang, DS; Wang, L; Xia, WX; Xiang, YQ; Yang, W; Ye, YF; Yuan, TZ; Zhang, HX; Zhao, C | 1 |
Li, X; Lu, W; Yang, L; Zhao, F; Zhou, T | 1 |
Cao, K; Chen, H; Cheng, Y; Wang, Z; Xiao, M; Zhang, Y; Zhu, Y | 1 |
Li, X; Ling, F; Long, W; Sun, X; Xu, S | 1 |
Chen, Y; Cui, X; Ding, X; Zhao, L | 1 |
Jiang, B; Li, Y; Ni, H; Zhou, Z | 1 |
Li, H; Li, W; Peng, X; Song, Y; Tan, G; Wang, F; Wang, X; Xie, J | 1 |
Chuan, Z; Hui, Z; Jiafeng, Z; Miaomiao, Z; Ping, H; Qiongna, D; Xiaojie, J; Yalin, H; Yiting, S | 1 |
Zhu, H | 1 |
Li, H; Song, Y; Wang, K; Wang, X; Xiao, J | 1 |
Yuan, F; Zhou, ZF | 1 |
Fan, Z; Gui, G; Ning, Y; Xu, Q; Yuan, C; Zhang, B | 1 |
Hu, J; Hu, L; Jiang, B; Jiang, M; Liu, X; Pan, X; Zeng, H | 1 |
Hao, S; Wang, Q; Zhang, W | 1 |
Fong, KW; Hussain, A; Ong, WS; Sommat, K; Soong, YL; Tan, T; Wee, J | 1 |
Fu, T; Gao, J; Shao, Z; Yan, M; Yan, Y; Zhang, L | 1 |
Hu, WH; Jin, T; Li, PJ; Luo, DH; Mo, HY | 1 |
Li, B; Liao, W; Wen, H; Xu, P; Zhang, S; Zheng, L | 1 |
Chen, QY; Guo, L; Guo, SS; Li, XY; Liang, YJ; Lin, C; Lin, HX; Liu, LT; Liu, SL; Mai, HQ; Sun, XS; Tang, LQ; Tang, QN; Wen, YF; Xie, HJ; Yan, JJ; Yang, ZC | 1 |
Bo, H; Cao, K; Gong, L; He, D; Li, R; Li, W; Liu, X; Liu, Y; Liu, Z; Ma, Y; Xiang, L; Xiao, M; Xing, X; Xiong, W; Yang, F; Zhou, J; Zhou, M; Zhou, Y; Zhu, Y | 1 |
Chan, AT; Cheng, SH; Cheung, CS; Ho, K; Hui, CW; Hui, EP; Lau, CP; Lui, VW; Ma, BB; Ng, MH; Tsang, CM; Tsao, SW; Wong, CH | 1 |
Chen, X; Mou, J; Pan, X; Peng, G; Zou, Z | 1 |
Li, G; Liu, Y; Qiu, Y; Ren, S; Su, Z; Tan, P; Tian, Y; Wang, Y; Zhang, X | 1 |
Cao, K; Cao, P; Han, S; He, D; Li, W; Li, Z; Peng, X; Tan, G; Yu, F; Yu, J; Zhou, J | 1 |
Cao, Y; Gao, J; Huang, J; Liu, M; Sun, L; Tang, M; Wang, X; Weng, X; Yang, L; Yi, W; Zeng, W; Zhou, M | 1 |
Cao, K; Cao, P; Han, S; He, D; Li, J; Li, W; Li, Z; Peng, X; Tan, G; Yu, F; Yu, J; Zhou, J | 1 |
Ang, MK; Cheah, SL; Fong, KW; Lim, WT; Ng, QS; Ong, WS; Quah, D; Soo, KC; Soong, YL; Tan, D; Tan, SH; Tan, T; Wee, J; Yip, C | 1 |
Ding, N; Feng, D; Liu, Q; Sun, LQ; Tan, G; Wang, X; Xie, B; Yang, X; Zhang, J; Zhang, L; Zhou, Z | 1 |
Hou, C; Tan, T; Yang, N; Zhu, L | 1 |
Hidaka, T; Ishiguro, Y; Kameda, T; Kamiunten, A; Kawabata, T; Kitanaka, A; Kubuki, Y; Miyaushiro, S; Sekine, M; Shide, K; Shimoda, K; Umekita, Y | 1 |
Lan, XW; Mao, YP; OuYang, PY; Su, Z; Tang, J; Xie, FY | 1 |
Li, W; Peng, X; Qin, J; Song, Y; Tan, G; Xiang, H; You, Y; Zhang, X | 1 |
Li, T | 1 |
Li, G; Liu, C; Liu, Y; Qiu, Y; Ren, S; Su, Z; Tian, Y | 1 |
Chen, S; Chen, X; Liao, Y; Lin, X; Long, D; Shen, F; Yu, T; Zhang, L | 1 |
Jiang, YX; Li, YH; Liang, Y; Luo, HY; Wang, DS; Wang, FH; Wang, Y; Wang, ZQ | 1 |
Huang, Y; Liang, W; Wu, X; Yang, Y; Zhang, L; Zhang, Y; Zhao, H; Zhao, L; Zhao, Y | 1 |
Cai, T; Li, G; Liu, C; Liu, Y; Qiu, Y; Ren, S; She, L; Su, Z; Tian, Y; Wang, Y; Wei, M; Zhang, X | 1 |
Duan, Y; Fan, X; Gong, Z; Gulina, K; Hou, Y; Jiang, Z; Li, J; Li, X; Li, Z; Liu, Y; Peng, Y; Sun, L; Tan, G; Xie, B; Yin, L; Yu, X; Yuan, B; Zhu, Q | 1 |
Athanassiou, H; Bobos, M; Ciuleanu, E; Ciuleanu, T; Dionysopoulos, D; Eleftheraki, AG; Fountzilas, G; Kalogera-Fountzila, A; Karayannopoulou, G; Markou, K; Misailidou, D; Nikolaou, A; Resiga, L; Samantas, E; Skarlos, D; Zaramboukas, T | 1 |
He, G; Li, H; Li, W; Ma, Y; Tan, G | 1 |
Cai, XY; Cai, YC; Cao, Y; Hu, WH; Jiang, WQ; Jin, Y; Shi, YX; Xia, XY; Zhang, WD | 1 |
Guo, Y; Huang, D; Li, G; Li, S; Liu, Y; Qiu, Y; Tan, P; Tian, Y; Xiao, J; Zhang, X | 1 |
Huang, WL; Li, XY; Lin, SL; Lin, W; Lin, WZ; Lin, YC; Wang, HB | 1 |
He, G; Li, H; Li, W; Ma, Y; Tan, G; Zhang, X | 1 |
Drage, MG; Haddad, RI; Lichtman, AH; Shah, SM | 1 |
An, X; Chen, C; Li, YH; Liang, Y; Luo, HY; Wang, FH; Wang, ZQ; Zhang, L | 1 |
Chan, AT; Hui, CW; Hui, EP; Lau, CP; Li, Y; Lui, VW; Ma, BB; Ng, MH; Tsao, SW; Wong, CH | 1 |
Jiang, C; Jiang, Z; Liu, H; Pu, L; Song, L; Zhang, P; Zhao, S | 1 |
He, CX; Jin, Y; Lin, BC; Shao, L; Ye, X; Zhang, BB; Zhang, YP | 1 |
7 trial(s) available for paclitaxel and Nasopharyngeal Carcinoma
Article | Year |
---|---|
Bevacizumab versus placebo in combination with paclitaxel and carboplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase II trial.
Topics: Antineoplastic Combined Chemotherapy Protocols; Bevacizumab; Carboplatin; Humans; Lung Neoplasms; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Paclitaxel | 2021 |
Effect of Induction Chemotherapy With Paclitaxel, Cisplatin, and Capecitabine vs Cisplatin and Fluorouracil on Failure-Free Survival for Patients With Stage IVA to IVB Nasopharyngeal Carcinoma: A Multicenter Phase 3 Randomized Clinical Trial.
Topics: Antineoplastic Combined Chemotherapy Protocols; Capecitabine; Chemoradiotherapy; Cisplatin; Fluorouracil; Humans; Induction Chemotherapy; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Paclitaxel | 2022 |
Thyroid V40 Predicts Primary Hypothyroidism After Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma.
Topics: Adult; Age Factors; Aged; Analysis of Variance; Antineoplastic Combined Chemotherapy Protocols; Carboplatin; Carcinoma; Chemoradiotherapy; Cisplatin; Deoxycytidine; Female; Follow-Up Studies; Gemcitabine; Humans; Hypothyroidism; Incidence; Induction Chemotherapy; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Pituitary Gland; Radiotherapy Dosage; Radiotherapy, Intensity-Modulated; Regression Analysis; Thyroid Gland; Time Factors | 2017 |
Concurrent chemo-radiation with or without induction gemcitabine, Carboplatin, and Paclitaxel: a randomized, phase 2/3 trial in locally advanced nasopharyngeal carcinoma.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Carboplatin; Carcinoma; Chemoradiotherapy; Cisplatin; Deoxycytidine; Disease-Free Survival; Female; Gemcitabine; Humans; Induction Chemotherapy; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Patient Compliance; Quality of Life; Radiation-Sensitizing Agents | 2015 |
Phase I/II dose-finding study of nanoparticle albumin-bound paclitaxel (nab®-Paclitaxel) plus Cisplatin as Treatment for Metastatic Nasopharyngeal Carcinoma.
Topics: Adult; Albumin-Bound Paclitaxel; Albumins; Antineoplastic Combined Chemotherapy Protocols; Carcinoma; Cisplatin; Disease-Free Survival; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Humans; Immunohistochemistry; Male; Maximum Tolerated Dose; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Osteonectin; Paclitaxel; Treatment Outcome | 2016 |
Induction chemotherapy followed by concomitant radiotherapy and weekly cisplatin versus the same concomitant chemoradiotherapy in patients with nasopharyngeal carcinoma: a randomized phase II study conducted by the Hellenic Cooperative Oncology Group (HeC
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Biomarkers, Tumor; Carcinoma; Chemoradiotherapy; Cisplatin; Epirubicin; Female; Humans; Induction Chemotherapy; Kaplan-Meier Estimate; Ki-67 Antigen; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Prognosis; Proportional Hazards Models; Tumor Suppressor Protein p53; Young Adult | 2012 |
Triplet combination with paclitaxel, cisplatin and 5-FU is effective in metastatic and/or recurrent nasopharyngeal carcinoma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Carcinoma; Cisplatin; Female; Fluorouracil; Humans; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Paclitaxel; Prognosis | 2013 |
44 other study(ies) available for paclitaxel and Nasopharyngeal Carcinoma
Article | Year |
---|---|
Timosaponin AIII Suppresses RAP1 Signaling Pathway to Enhance the Inhibitory Effect of Paclitaxel on Nasopharyngeal Carcinoma.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Cell Proliferation; Guanine Nucleotide Exchange Factors; Humans; Mice; Mice, Nude; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Saponins; Signal Transduction; Steroids; Xenograft Model Antitumor Assays | 2022 |
circRNA_0067717 promotes paclitaxel resistance in nasopharyngeal carcinoma by acting as a scaffold for TRIM41 and p53.
Topics: Cell Line, Tumor; Cell Proliferation; Humans; In Situ Hybridization, Fluorescence; MicroRNAs; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; RNA, Circular; Tumor Suppressor Protein p53; Ubiquitin-Protein Ligases | 2023 |
Cytoplasmic poly(A)-binding protein 1 (PABPC1) is a prognostic biomarker to predict survival in nasopharyngeal carcinoma regardless of chemoradiotherapy.
Topics: Chemoradiotherapy; Humans; Induction Chemotherapy; Ki-67 Antigen; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Poly(A)-Binding Protein I; Poly(A)-Binding Proteins; Prognosis; Tumor Suppressor Protein p53 | 2023 |
Extracellular vesicles derived from paclitaxel-sensitive nasopharyngeal carcinoma cells deliver miR-183-5p and impart paclitaxel sensitivity through a mechanism involving P-gp.
Topics: ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Line, Tumor; Cell Proliferation; Extracellular Vesicles; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel | 2023 |
Parkin enhances sensitivity of paclitaxel to NPC by arresting cell cycle.
Topics: Antineoplastic Agents, Phytogenic; Cell Cycle Checkpoints; Cell Line, Tumor; Drug Resistance, Neoplasm; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Ubiquitin-Protein Ligases | 2020 |
The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy.
Topics: Autophagy; Caspase 1; Caspase Inhibitors; Cell Line, Tumor; Down-Regulation; Enzyme Activation; Humans; Intracellular Signaling Peptides and Proteins; Nasopharyngeal Carcinoma; Necrosis; Paclitaxel; Phenotype; Phosphate-Binding Proteins; Pyroptosis | 2020 |
Implication of hsa_circ_0028007 in reinforcing migration, invasion, and chemo-tolerance of nasopharyngeal carcinoma cells.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Movement; Drug Resistance, Neoplasm; Female; Humans; Male; MicroRNAs; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Invasiveness; Nose; Paclitaxel | 2020 |
Silencing long non-coding RNA H19 combined with paclitaxel inhibits nasopharyngeal carcinoma progression.
Topics: Animals; Cell Line, Tumor; Cell Proliferation; Disease Progression; Gene Silencing; Humans; Mice; Mice, Nude; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; RNA, Long Noncoding; Xenograft Model Antitumor Assays | 2020 |
Neferine sensitized Taxol-resistant nasopharygeal carcinoma to Taxol by inhibiting EMT via downregulating miR-130b-5p.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Benzylisoquinolines; Cell Line, Tumor; Cell Movement; Down-Regulation; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Male; Mice, Inbred BALB C; MicroRNAs; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Xenograft Model Antitumor Assays | 2020 |
Exosomes derived from Taxol-resistant nasopharyngeal carcinoma (NPC) cells transferred DDX53 to NPC cells and promoted cancer resistance to Taxol.
Topics: Aniline Compounds; Antineoplastic Agents, Phytogenic; Benzylidene Compounds; DEAD-box RNA Helicases; Drug Resistance, Neoplasm; Exosomes; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Tumor Cells, Cultured | 2021 |
Optimization, Characterization and in vivo Evaluation of Paclitaxel-Loaded Folate-Conjugated Superparamagnetic Iron Oxide Nanoparticles.
Topics: Animals; Antineoplastic Agents; Cell Death; Cell Line, Tumor; Drug Liberation; Folic Acid; Humans; Imines; Inhibitory Concentration 50; Magnetic Iron Oxide Nanoparticles; Nasopharyngeal Carcinoma; Paclitaxel; Particle Size; Polyethylene Glycols; Polyethylenes; Rats; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Static Electricity; Succinates; Tissue Distribution | 2021 |
Proteasome inhibitors decrease paclitaxel‑induced cell death in nasopharyngeal carcinoma with the accumulation of CDK1/cyclin B1.
Topics: Antineoplastic Agents; Apoptosis; CDC2 Protein Kinase; Cell Cycle Checkpoints; Cell Death; Cell Line, Tumor; Cyclin B1; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Proteasome Inhibitors; Signal Transduction | 2021 |
LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis.
Topics: Base Sequence; Carcinoma; Cell Line, Tumor; Drug Resistance, Neoplasm; Female; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; Humans; Male; MicroRNAs; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; RNA-Binding Proteins; RNA, Long Noncoding; Signal Transduction; Up-Regulation | 2017 |
Targeted regulationof STAT3 by miR-29a in mediating Taxol resistance of nasopharyngeal carcinoma cell line CNE-1.
Topics: Apoptosis; Carcinoma; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; STAT3 Transcription Factor | 2018 |
The efficacy of induction chemotherapy in the treatment of stage II nasopharyngeal carcinoma in intensity modulated radiotherapy era.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Chemical and Drug Induced Liver Injury; Chemoradiotherapy; Cisplatin; Combined Modality Therapy; Female; Fluorouracil; Hematologic Neoplasms; Humans; Induction Chemotherapy; Kaplan-Meier Estimate; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Neoplasm Staging; Paclitaxel; Progression-Free Survival; Proportional Hazards Models; Radiotherapy, Intensity-Modulated; Retrospective Studies; Treatment Outcome | 2018 |
Tumor Volume Reduction After Gemcitabine Plus Cisplatin Induction Chemotherapy in Locally Advanced Nasopharyngeal Cancer: Comparison with Paclitaxel and Cisplatin Regimens.
Topics: Antineoplastic Combined Chemotherapy Protocols; Chemoradiotherapy; China; Cisplatin; Deoxycytidine; Disease-Free Survival; Female; Gemcitabine; Humans; Induction Chemotherapy; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Staging; Paclitaxel; Retrospective Studies; Survival Analysis; Tumor Burden | 2018 |
Liposomal paclitaxel versus docetaxel in induction chemotherapy using Taxanes, cisplatin and 5-fluorouracil for locally advanced nasopharyngeal carcinoma.
Topics: Adolescent; Adult; Aged; Cell Line, Tumor; Cisplatin; Disease-Free Survival; Docetaxel; Drug-Related Side Effects and Adverse Reactions; Female; Fluorouracil; Herpesvirus 4, Human; Humans; Liposomes; Male; Middle Aged; Nasopharyngeal Carcinoma; Neoplasm Recurrence, Local; Neutropenia; Paclitaxel; Taxoids | 2018 |
The MRVI1-AS1/ATF3 signaling loop sensitizes nasopharyngeal cancer cells to paclitaxel by regulating the Hippo-TAZ pathway.
Topics: A549 Cells; Activating Transcription Factor 3; Acyltransferases; Cell Line, Tumor; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; HEK293 Cells; Hippo Signaling Pathway; Humans; MCF-7 Cells; Membrane Proteins; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Phosphoproteins; Protein Serine-Threonine Kinases; RNA, Antisense; Signal Transduction; Transcription Factors | 2019 |
Preclinical evaluation of the mTOR-PI3K inhibitor BEZ235 in nasopharyngeal cancer models.
Topics: Animals; Antineoplastic Agents; Carcinoma; Cell Cycle; Cell Line, Tumor; Cell Survival; Cisplatin; Enzyme Activation; Female; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitory Concentration 50; MAP Kinase Signaling System; Mice; Mice, Nude; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Transplantation; Paclitaxel; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Quinolines; TOR Serine-Threonine Kinases | 2014 |
[Preliminary mechanism of paclitaxel enhanced radiation sensitivity for nasopharyngeal carcinoma cells].
Topics: Apoptosis; Carcinoma; Cell Cycle; Cell Line, Tumor; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Radiation Tolerance | 2014 |
Ephrin type‑A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3‑kinase/Akt signalling pathway.
Topics: Animals; Apoptosis; Carcinoma; Cell Line, Tumor; Cyclin E; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cyclin-Dependent Kinases; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Rabbits; Receptor, EphA2; Signal Transduction | 2015 |
MiR-634 sensitizes nasopharyngeal carcinoma cells to paclitaxel and inhibits cell growth both in vitro and in vivo.
Topics: Animals; Antineoplastic Agents, Phytogenic; Carcinoma; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Female; Gene Expression Profiling; Humans; Mice, Nude; MicroRNAs; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Oligonucleotide Array Sequence Analysis; Paclitaxel; Reverse Transcriptase Polymerase Chain Reaction; Time Factors; Transfection; Tumor Burden; Xenograft Model Antitumor Assays | 2014 |
Evaluation of a dansyl-based amino acid DNSBA as an imaging probe for apoptosis detection.
Topics: Animals; Annexin A5; Apoptosis; Biological Transport; Carcinoma; Caspases; Cell Line, Tumor; Cell Membrane Permeability; Dansyl Compounds; Gene Expression; Humans; In Situ Nick-End Labeling; Injections, Subcutaneous; Kinetics; Mice; Mice, Inbred BALB C; Molecular Probes; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Transplantation; Optical Imaging; Paclitaxel; Phenylpropionates; Tumor Necrosis Factor-alpha | 2015 |
MiR-1204 sensitizes nasopharyngeal carcinoma cells to paclitaxel both in vitro and in vivo.
Topics: Animals; Antineoplastic Agents, Phytogenic; Carcinoma; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Mice; MicroRNAs; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Xenograft Model Antitumor Assays | 2015 |
FOXC2 promotes chemoresistance in nasopharyngeal carcinomas via induction of epithelial mesenchymal transition.
Topics: Animals; Anoikis; Carcinoma; Cell Proliferation; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Forkhead Transcription Factors; Gene Expression Regulation, Neoplastic; Humans; Mice; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel | 2015 |
[Study of the relationship among expression of Survivin and MRP and the drug resistance in human nasopharyngeal carcinoma].
Topics: Antineoplastic Agents; Carcinoma; Cisplatin; Drug Resistance, Neoplasm; Fluorouracil; Humans; Immunohistochemistry; Inhibitor of Apoptosis Proteins; Lymphatic Metastasis; Multidrug Resistance-Associated Proteins; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Nasopharynx; Paclitaxel; Survivin; Vincristine | 2015 |
Nasopharyngeal carcinoma with bone marrow metastasis: positive response to weekly paclitaxel chemotherapy.
Topics: Bone Marrow Neoplasms; Carcinoma; Humans; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Paclitaxel | 2015 |
Long-term outcomes of concurrent chemoradiotherapy versus radiotherapy alone in stage II nasopharyngeal carcinoma treated with IMRT: a retrospective study.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Carcinoma; Chemoradiotherapy; Cisplatin; Disease-Free Survival; Drug Administration Schedule; Female; Humans; Kaplan-Meier Estimate; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Staging; Paclitaxel; Prognosis; Proportional Hazards Models; Radiotherapy, Intensity-Modulated; Retrospective Studies; Treatment Outcome | 2016 |
Amplification of chromosome 8q21-qter associated with the acquired paclitaxel resistance of nasopharyngeal carcinoma cells.
Topics: Angiopoietin-1; Antineoplastic Agents, Phytogenic; Blotting, Western; Carcinoma; Cell Line, Tumor; Chromosomes, Human, Pair 8; Comparative Genomic Hybridization; Drug Resistance, Neoplasm; Gene Amplification; Gene Expression Profiling; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Oligonucleotide Array Sequence Analysis; Paclitaxel; Real-Time Polymerase Chain Reaction; Transcriptome | 2015 |
[Pacilitaxel induces human nasopharyngeal carcinoma cell line CNE2 apoptosis and growth inhibition by suppressing PI3K/AKT/p53 signaling pathway].
Topics: Apoptosis; Apoptosis Regulatory Proteins; Carcinoma; Cell Line, Tumor; Flow Cytometry; Humans; Membrane Potentials; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Tumor Suppressor Protein p53 | 2015 |
Ionizing radiation promotes advanced malignant traits in nasopharyngeal carcinoma via activation of epithelial-mesenchymal transition and the cancer stem cell phenotype.
Topics: Antineoplastic Agents; Cadherins; Carcinoma; Cell Line, Tumor; Cell Movement; Cisplatin; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplastic Stem Cells; Paclitaxel; Proto-Oncogene Proteins c-myc; Radiation, Ionizing; Receptors, G-Protein-Coupled; Vimentin | 2016 |
Silencing Op18/stathmin by RNA Interference Promotes the Sensitivity of Nasopharyngeal Carcinoma Cells to Taxol and High-Grade Differentiation of Xenografted Tumours in Nude Mice.
Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma; Cell Line, Tumor; Cell Movement; Cell Proliferation; Combined Modality Therapy; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Humans; Male; Mice, Nude; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Grading; Paclitaxel; Random Allocation; RNA Interference; RNAi Therapeutics; Stathmin; Xenograft Model Antitumor Assays | 2016 |
A triplet chemotherapy regimen of cisplatin, fluorouracil and paclitaxel for locoregionally recurrent nasopharyngeal carcinoma cases contraindicated for re-irradiation/surgery.
Topics: Adult; Aged; Antineoplastic Agents; Carcinoma; Cisplatin; Disease-Free Survival; Drug Therapy, Combination; Female; Fluorouracil; Humans; Kaplan-Meier Estimate; Leukopenia; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Neutropenia; Paclitaxel; Prognosis; Re-Irradiation; Treatment Outcome | 2016 |
Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma.
Topics: Antineoplastic Agents, Phytogenic; Carcinoma; Cell Line, Tumor; Drug Resistance, Neoplasm; High-Throughput Nucleotide Sequencing; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Polymerase Chain Reaction; RNA, Long Noncoding; Transfection | 2016 |
The FOXM1-ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells.
Topics: Carcinoma; Cell Line, Tumor; Cell Movement; Cell Proliferation; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Forkhead Box Protein M1; Gene Expression Regulation, Neoplastic; Humans; Multidrug Resistance-Associated Proteins; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Neoplastic Stem Cells; Paclitaxel; Signal Transduction | 2017 |
Inhibition of α folate receptor resulting in a reversal of taxol resistance in nasopharyngeal carcinoma.
Topics: Antibodies, Monoclonal; Antineoplastic Agents, Phytogenic; Carcinoma; Drug Resistance, Neoplasm; Folate Receptor 1; Folic Acid; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Tumor Cells, Cultured | 2012 |
Comparison of five cisplatin-based regimens frequently used as the first-line protocols in metastatic nasopharyngeal carcinoma.
Topics: Antineoplastic Combined Chemotherapy Protocols; Bleomycin; Carcinoma; Cisplatin; Deoxycytidine; Disease-Free Survival; Female; Fluorouracil; Follow-Up Studies; Gemcitabine; Humans; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Retrospective Studies | 2012 |
[Synergistic interactions of TRAIL and paclitaxel on the nasopharyngeal carcinoma cell lines in vitro].
Topics: Apoptosis; Carcinoma; Cell Line, Tumor; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Receptors, TNF-Related Apoptosis-Inducing Ligand | 2012 |
[Study of sequence-dependent in vitro effects of zoledronic acid and paclitaxel upon human nasopharyngeal carcinoma cell line HNE1].
Topics: Apoptosis; Carcinoma; Cell Line, Tumor; Cell Proliferation; Diphosphonates; Humans; Imidazoles; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Zoledronic Acid | 2012 |
Genomic methylation profiling combined with gene expression microarray reveals the aberrant methylation mechanism involved in nasopharyngeal carcinoma taxol resistance.
Topics: Antimetabolites, Antineoplastic; Antineoplastic Agents, Phytogenic; Azacitidine; Carcinoma; Cell Line, Tumor; Decitabine; DNA Methylation; Drug Resistance, Neoplasm; Gene Expression Profiling; Genomics; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Oligonucleotide Array Sequence Analysis; Paclitaxel | 2012 |
Metastatic human papillomavirus-positive nasopharyngeal carcinoma with an unusual pattern of aggressive hematogenous spread.
Topics: Alphapapillomavirus; Antineoplastic Combined Chemotherapy Protocols; Axilla; Biomarkers, Tumor; Carboplatin; Carcinoma; Carcinoma, Squamous Cell; Chemoradiotherapy; Cisplatin; Diagnosis, Differential; Drug Administration Schedule; Fatal Outcome; Fluorodeoxyglucose F18; Fluorouracil; Heart Failure; Humans; Hypertension, Pulmonary; Hypoxia; Immunohistochemistry; Laryngoscopy; Lymph Nodes; Lymphatic Metastasis; Male; Middle Aged; Multimodal Imaging; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Invasiveness; Neoplasm Staging; Paclitaxel; Papillomavirus Infections; Positron-Emission Tomography; Pulmonary Artery; Radiopharmaceuticals; Radiotherapy, Intensity-Modulated; Randomized Controlled Trials as Topic; Thrombophilia; Tomography, X-Ray Computed; Vascular Neoplasms | 2012 |
Preclinical evaluation of the AKT inhibitor MK-2206 in nasopharyngeal carcinoma cell lines.
Topics: Antineoplastic Agents; Carcinoma; Cell Line, Tumor; Cell Proliferation; Cisplatin; Heterocyclic Compounds, 3-Ring; Humans; Mitogen-Activated Protein Kinases; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; TOR Serine-Threonine Kinases | 2013 |
[Effect of low-molecular-weight heparin combined with paclitaxel on the invasiveness and migration of nasopharyngeal carcinoma cells in vitro].
Topics: Carcinoma; Cell Line, Tumor; Cell Movement; Cell Proliferation; Glucuronidase; Heparin Lyase; Heparin, Low-Molecular-Weight; Humans; Matrix Metalloproteinase 9; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Paclitaxel; Tissue Inhibitor of Metalloproteinase-1 | 2012 |
Serum lactic dehydrogenase strongly predicts survival in metastatic nasopharyngeal carcinoma treated with palliative chemotherapy.
Topics: Adolescent; Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Bone Neoplasms; Carcinoma; Cisplatin; Female; Fluorouracil; Humans; Kaplan-Meier Estimate; L-Lactate Dehydrogenase; Liver Neoplasms; Lung Neoplasms; Male; Middle Aged; Multivariate Analysis; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Outcome Assessment, Health Care; Paclitaxel; Palliative Care; Predictive Value of Tests; Prognosis; Proportional Hazards Models; Retrospective Studies; Young Adult | 2013 |