pa-824 has been researched along with Tuberculosis--Pulmonary* in 34 studies
3 review(s) available for pa-824 and Tuberculosis--Pulmonary
Article | Year |
---|---|
PA-824 , moxifloxacin and pyrazinamide combination therapy for tuberculosis.
New treatment regimens are urgently required for tuberculosis (TB). The existing four-drug regimen for TB is > 20 years old, with multidrug resistant (MDR) and extensively drug-resistant (XDR) TB on the increase.. Recently, the first novel potential combination TB treatment regimen for both drug-sensitive and MDR TB incorporating a new nitroimidazole compound, PA-824 , was investigated in a Phase II proof-of-concept clinical trial. This article reviews the rationale for this novel study, discusses the development strategy for PA-824 and highlights the study findings and its implications for future development of this regimen.. Expert opinion will be offered on the utility of this new multicomponent treatment regimen. We will highlight how this study informs the development pathway for future novel TB regimens and explore the PA-824, moxifloxacin (MOX) and pyrazinamide combination as a first step towards developing a single treatment regimen for both drug-sensitive and drug-resistant diseases. Topics: Animals; Antitubercular Agents; Aza Compounds; Clinical Trials as Topic; Drug Combinations; Drug Resistance, Multiple, Bacterial; Fluoroquinolones; Humans; Molecular Structure; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Quinolines; Tuberculosis, Pulmonary | 2013 |
New anti-tuberculosis drugs with novel mechanisms of action.
It is estimated that a third of the world's population is currently infected with tuberculosis, leading to 1.6 million deaths annually. The current drug regimen is 40 years old and takes 6-9 months to administer. In addition, the emergence of drug resistant strains and HIV co-infection mean that there is an urgent need for new anti-tuberculosis drugs. The twenty-first century has seen a revival in research and development activity in this area, with several new drug candidates entering clinical trials. This review considers new potential first-line anti-tuberculosis drug candidates, in particular those with novel mechanisms of action, as these are most likely to prove effective against resistant strains. A brief overview of current first-line and recent drugs (such as fluoroquinolones, rifampicin and isoniazid analogues) is initially presented. This is followed by a description of structure-activity relationships, in vitro and in vivo activity, pharmacokinetics, mechanism of action, combination regimens and clinical trials of the new drug candidates SQ109, PA-824, OPC-67683, TMC207 and others. Topics: Adamantane; Animals; Antitubercular Agents; Diarylquinolines; Drug Design; Drug Resistance, Multiple, Bacterial; Ethylenediamines; Humans; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Nitroimidazoles; Oxazoles; Quinolines; Structure-Activity Relationship; Tuberculosis, Pulmonary | 2008 |
Advances in the treatment of tuberculosis.
The current 6-month tuberculosis (TB) therapy is suboptimal with significant side effects and a poor patient compliance problem that frequently selects drug-resistant organisms. The increasing drug-resistant TB problem highlights the need to develop new and more effective drugs. Significant progress has been made recently with several new drug candidates currently in clinical trials. Improved understanding of persister biology and development of persister drugs are likely to be important for developing a more effective therapy. Topics: Adamantane; AIDS-Related Opportunistic Infections; Animals; Anti-Bacterial Agents; Antitubercular Agents; Drug Administration Schedule; Drug Resistance, Bacterial; Drug Therapy, Combination; Drugs, Investigational; Ethylenediamines; Extensively Drug-Resistant Tuberculosis; Fluoroquinolones; Humans; Isoniazid; Mycobacterium tuberculosis; Nitroimidazoles; Oxazoles; Pyrazinamide; Rifampin; Treatment Refusal; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2007 |
9 trial(s) available for pa-824 and Tuberculosis--Pulmonary
Article | Year |
---|---|
Assessing Pretomanid for Tuberculosis (APT), a Randomized Phase 2 Trial of Pretomanid-Containing Regimens for Drug-Sensitive Tuberculosis: 12-Week Results.
Topics: Animals; Antitubercular Agents; Drug Therapy, Combination; Isoniazid; Mice; Nitroimidazoles; Pyrazinamide; Rifampin; Tuberculosis, Pulmonary | 2023 |
Randomised trial to evaluate the effectiveness and safety of varying doses of linezolid with bedaquiline and pretomanid in adults with pre-extensively drug-resistant or treatment intolerant/non-responsive multidrug-resistant pulmonary tuberculosis: study
Drug-resistant tuberculosis (DR-TB) is a global public health problem. Patients suffer for months if undiagnosed or treated inadequately, transmitting DR-TB in the community before succumbing to the disease. Early diagnosis, prompt treatment initiation and completion play a significant role in treatment success. However, extended regimens with injectable result in poor treatment adherence and outcomes. Our objective is to evaluate the effectiveness, safety and tolerability of various doses and duration of linezolid (LZD) in combination with bedaquiline (BDQ) and pretomanid (Pa) after 26 weeks of treatment in adults with pre-extensively drug-resistant or treatment intolerant/non-responsive multidrug-resistant pulmonary TB.. A multicentric, randomised pragmatic clinical trial in India will enrol participants in one of the three arms-control arm (arm 1): BDQ, Pa and LZD 600 mg daily for 26 weeks or intervention arms (arm 2): BDQ, Pa and LZD 600 mg for 9 weeks followed by 300 mg for 17 weeks or arm 3: BDQ, Pa and LZD 600 mg for 13 weeks followed by 300 mg for 13 weeks. The primary endpoint is the proportion of patients with favourable outcomes as sustained cure and treatment completion. The secondary endpoint is unfavourable outcomes, including deaths, treatment failure, toxicity/adverse events and lost to follow-up till 48 weeks post-treatment.. The study has been approved by the ethics committees of participating institutes and the National Institute for Research in TB. The trial results will help establish evidence towards a safe and effective dose of LZD that can be used in a fully, all-oral short course regimen for highly DR-TB patients. The results of this study will be shared with the National TB Elimination Programme of the country and the WHO guidelines development group through publications and dissemination meetings.. NCT05040126. Topics: Adult; Antitubercular Agents; Diarylquinolines; Humans; Linezolid; Nitroimidazoles; Randomized Controlled Trials as Topic; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2022 |
A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis.
In patients with rifampin-resistant tuberculosis, all-oral treatment regimens that are more effective, shorter, and have a more acceptable side-effect profile than current regimens are needed.. We conducted an open-label, phase 2-3, multicenter, randomized, controlled, noninferiority trial to evaluate the efficacy and safety of three 24-week, all-oral regimens for the treatment of rifampin-resistant tuberculosis. Patients in Belarus, South Africa, and Uzbekistan who were 15 years of age or older and had rifampin-resistant pulmonary tuberculosis were enrolled. In stage 2 of the trial, a 24-week regimen of bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) was compared with a 9-to-20-month standard-care regimen. The primary outcome was an unfavorable status (a composite of death, treatment failure, treatment discontinuation, loss to follow-up, or recurrence of tuberculosis) at 72 weeks after randomization. The noninferiority margin was 12 percentage points.. Recruitment was terminated early. Of 301 patients in stage 2 of the trial, 145, 128, and 90 patients were evaluable in the intention-to-treat, modified intention-to-treat, and per-protocol populations, respectively. In the modified intention-to-treat analysis, 11% of the patients in the BPaLM group and 48% of those in the standard-care group had a primary-outcome event (risk difference, -37 percentage points; 96.6% confidence interval [CI], -53 to -22). In the per-protocol analysis, 4% of the patients in the BPaLM group and 12% of those in the standard-care group had a primary-outcome event (risk difference, -9 percentage points; 96.6% CI, -22 to 4). In the as-treated population, the incidence of adverse events of grade 3 or higher or serious adverse events was lower in the BPaLM group than in the standard-care group (19% vs. 59%).. In patients with rifampin-resistant pulmonary tuberculosis, a 24-week, all-oral regimen was noninferior to the accepted standard-care treatment, and it had a better safety profile. (Funded by Médecins sans Frontières; TB-PRACTECAL ClinicalTrials.gov number, NCT02589782.). Topics: Administration, Oral; Adolescent; Adult; Antitubercular Agents; Drug Therapy, Combination; Humans; Linezolid; Moxifloxacin; Rifampin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Young Adult | 2022 |
Pretomanid dose selection for pulmonary tuberculosis: An application of multi-objective optimization to dosage regimen design.
Clinical development of combination chemotherapies for tuberculosis (TB) is complicated by partial or restricted phase II dose-finding. Barriers include a propensity for drug resistance with monotherapy, practical limits on numbers of treatment arms for component dose combinations, and limited application of current dose selection methods to multidrug regimens. A multi-objective optimization approach to dose selection was developed as a conceptual and computational framework for currently evolving approaches to clinical testing of novel TB regimens. Pharmacokinetic-pharmacodynamic (PK-PD) modeling was combined with an evolutionary algorithm to identify dosage regimens that yield optimal trade-offs between multiple conflicting therapeutic objectives. The phase IIa studies for pretomanid, a newly approved nitroimidazole for specific cases of highly drug-resistant pulmonary TB, were used to demonstrate the approach with Pareto optimized dosing that best minimized sputum bacillary load and the probability of drug-related adverse events. Results include a population-typical characterization of the recommended 200 mg once daily dosage, the optimality of time-dependent dosing, examples of individualized therapy, and the determination of optimal loading doses. The approach generalizes conventional PK-PD target attainment to a design problem that scales to drug combinations, and provides a benefit-risk context for clinical testing of complex drug regimens. Topics: Adult; Antitubercular Agents; Colony-Forming Units Assay; Computer Simulation; Dose-Response Relationship, Drug; Drug Combinations; Drug Therapy, Combination; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Male; Nitroimidazoles; Safety; Sputum; Treatment Outcome; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2021 |
Treatment of Highly Drug-Resistant Pulmonary Tuberculosis.
Patients with highly drug-resistant forms of tuberculosis have limited treatment options and historically have had poor outcomes.. In an open-label, single-group study in which follow-up is ongoing at three South African sites, we investigated treatment with three oral drugs - bedaquiline, pretomanid, and linezolid - that have bactericidal activity against tuberculosis and to which there is little preexisting resistance. We evaluated the safety and efficacy of the drug combination for 26 weeks in patients with extensively drug-resistant tuberculosis and patients with multidrug-resistant tuberculosis that was not responsive to treatment or for which a second-line regimen had been discontinued because of side effects. The primary end point was the incidence of an unfavorable outcome, defined as treatment failure (bacteriologic or clinical) or relapse during follow-up, which continued until 6 months after the end of treatment. Patients were classified as having a favorable outcome at 6 months if they had resolution of clinical disease, a negative culture status, and had not already been classified as having had an unfavorable outcome. Other efficacy end points and safety were also evaluated.. A total of 109 patients were enrolled in the study and were included in the evaluation of efficacy and safety end points. At 6 months after the end of treatment in the intention-to-treat analysis, 11 patients (10%) had an unfavorable outcome and 98 patients (90%; 95% confidence interval, 83 to 95) had a favorable outcome. The 11 unfavorable outcomes were 7 deaths (6 during treatment and 1 from an unknown cause during follow-up), 1 withdrawal of consent during treatment, 2 relapses during follow-up, and 1 loss to follow-up. The expected linezolid toxic effects of peripheral neuropathy (occurring in 81% of patients) and myelosuppression (48%), although common, were manageable, often leading to dose reductions or interruptions in treatment with linezolid.. The combination of bedaquiline, pretomanid, and linezolid led to a favorable outcome at 6 months after the end of therapy in a high percentage of patients with highly drug-resistant forms of tuberculosis; some associated toxic effects were observed. (Funded by the TB Alliance and others; ClinicalTrials.gov number, NCT02333799.). Topics: Administration, Oral; Adolescent; Adult; Antitubercular Agents; Bacterial Load; Diarylquinolines; Drug Therapy, Combination; Extensively Drug-Resistant Tuberculosis; Female; Humans; Intention to Treat Analysis; Linezolid; Male; Middle Aged; Mycobacterium tuberculosis; Nitroimidazoles; Treatment Outcome; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Young Adult | 2020 |
Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pul
New antituberculosis regimens are urgently needed to shorten tuberculosis treatment. Following on from favourable assessment in a 2 week study, we investigated a novel regimen for efficacy and safety in drug-susceptible and multidrug-resistant (MDR) tuberculosis during the first 8 weeks of treatment.. We did this phase 2b study of bactericidal activity--defined as the decrease in colony forming units (CFUs) of Mycobacterium tuberculosis in the sputum of patients with microscopy smear-positive pulmonary tuberculosis-at eight sites in South Africa and Tanzania. We enrolled treatment-naive patients with drug-susceptible, pulmonary tuberculosis, who were randomly assigned by computer-generated sequences to receive either 8 weeks of moxifloxacin, 100 mg pretomanid (formerly known as PA-824), and pyrazinamide (MPa100Z regimen); moxifloxacin, 200 mg pretomanid, and pyrazinamide (MPa200Z regimen); or the current standard care for drug-susceptible pulmonary tuberculosis, isoniazid, rifampicin, PZA, and ethambutol (HRZE regimen). A group of patients with MDR tuberculosis received MPa200Z (DRMPa200Z group). The primary outcome was bactericidal activity measured by the mean daily rate of reduction in M tuberculosis CFUs per mL overnight sputum collected once a week, with joint Bayesian non-linear mixed-effects regression modelling. We also assessed safety and tolerability by monitoring adverse events. This study is registered with ClinicalTrials.gov, number NCT01498419.. Between March 24, 2012, and July 26, 2013 we enrolled 207 patients and randomly assigned them to treatment groups; we assigned 60 patients to the MPa100Z regimen, 62 to the MPa200Z regimen, and 59 to the HRZE regimen. We non-randomly assigned 26 patients with drug-resistant tuberculosis to the DRMPa200Z regimen. In patients with drug-susceptible tuberculosis, the bactericidal activity of MPa200Z (n=54) on days 0-56 (0·155, 95% Bayesian credibility interval 0·133-0·178) was significantly greater than for HRZE (n=54, 0·112, 0·093-0·131). DRMPa200Z (n=9) had bactericidal activity of 0·117 (0·070-0·174). The bactericidal activity on days 7-14 was strongly associated with bactericidal activity on days 7-56. Frequencies of adverse events were similar to standard treatment in all groups. The most common adverse event was hyperuricaemia in 59 (29%) patients (17 [28%] patients in MPa100Z group, 17 [27%] patients in MPa200Z group, 17 [29%] patients. in HRZE group, and 8 [31%] patients in DRMPa200Z group). Other common adverse events were nausea in (14 [23%] patients in MPa100Z group, 8 [13%] patients in MPa200Z group, 7 [12%] patients in HRZE group, and 8 [31%] patients in DRMPa200Z group) and vomiting (7 [12%] patients in MPa100Z group, 7 [11%] patients in MPa200Z group, 7 [12%] patients in HRZE group, and 4 [15%] patients in DRMPa200Z group). No on-treatment electrocardiogram occurrences of corrected QT interval more than 500 ms (an indicator of potential of ventricular tachyarrhythmia) were reported. No phenotypic resistance developed to any of the drugs in the regimen.. The combination of moxifloxacin, pretomanid, and pyrazinamide, was safe, well tolerated, and showed superior bactericidal activity in drug-susceptible tuberculosis during 8 weeks of treatment. Results were consistent between drug-susceptible and MDR tuberculosis. This new regimen is ready to enter phase 3 trials in patients with drug-susceptible tuberculosis and MDR-tuberculosis, with the goal of shortening and simplifying treatment.. Global Alliance for TB Drug Development. Topics: Adolescent; Adult; Antitubercular Agents; Colony Count, Microbial; Drug Therapy, Combination; Ethambutol; Female; Fluoroquinolones; Humans; Isoniazid; Male; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Rifampin; South Africa; Sputum; Tanzania; Treatment Outcome; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Young Adult | 2015 |
Phase II dose-ranging trial of the early bactericidal activity of PA-824.
PA-824 is a novel nitroimidazo-oxazine under evaluation as an antituberculosis agent. A dose-ranging randomized study was conducted to evaluate the safety, tolerability, pharmacokinetics, and early bactericidal activity of PA-824 in drug-sensitive, sputum smear-positive adult pulmonary-tuberculosis patients to find the lowest dose giving optimal bactericidal activity (EBA). Fifteen patients per cohort received oral PA-824 in doses of 50 mg, 100 mg, 150 mg, or 200 mg per kg body weight per day for 14 days. Eight subjects received once-daily standard antituberculosis treatment with isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE) as a positive control. The primary efficacy endpoint was the mean rate of decline in log CFU of Mycobacterium tuberculosis in sputum incubated on agar plates from serial overnight sputum collections, expressed as log(10) CFU/day/ml sputum (± standard deviation). The mean 14-day EBA of HRZE was consistent with previous studies (0.177 ± 0.042), and that of PA-824 at 50 mg, 100 mg, 150 mg, and 200 mg was 0.063 ± 0.058, 0.091 ± 0.073, 0.078 ± 0.074, and 0.112 ± 0.070, respectively. Although the study was not powered for testing the difference between arms, there was a trend toward significance, indicating a lower EBA at the 50-mg dose. Serum PA-824 levels were approximately dose proportional with respect to the area under the time-concentration curve. All doses were safe and well tolerated with no dose-limiting adverse events or clinically significant QTc changes. A dose of 100 mg to 200 mg PA-824 daily appears to be safe and efficacious and will be further evaluated as a component of novel antituberculosis regimens for drug-sensitive and drug-resistant tuberculosis. Topics: Adolescent; Adult; Antitubercular Agents; Drug Administration Schedule; Ethambutol; Female; Humans; Isoniazid; Male; Middle Aged; Nitroimidazoles; Pyrazinamide; Rifampin; Tuberculosis, Pulmonary; Young Adult | 2012 |
14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial.
New drugs, but also shorter, better-tolerated regimens are needed to tackle the high global burden of tuberculosis complicated by drug resistance and retroviral disease. We investigated new multiple-agent combinations over the first 14 days of treatment to assess their suitability for future development.. In this prospective, randomised, early bactericidal activity (EBA) study, treatment-naive, drug-susceptible patients with uncomplicated pulmonary tuberculosis were admitted to hospitals in Cape Town, South Africa, between Oct 7, 2010, and Aug 19, 2011. Patients were randomised centrally by computer-generated randomisation sequence to receive bedaquiline, bedaquiline-pyrazinamide, PA-824-pyrazinamide, bedaquiline-PA-824, PA-824-moxifloxacin-pyrazinamide, or unmasked standard antituberculosis treatment as positive control. The primary outcome was the 14-day EBA assessed in a central laboratory from the daily fall in colony forming units (CFU) of M tuberculosis per mL of sputum in daily overnight sputum collections. Bilinear regression curves were fitted for each group separately and groups compared with ANOVA for ranks, followed by pair-wise comparisons adjusted for multiplicity. Clinical staff were partially masked but laboratory personnel were fully masked. This study is registered, NCT01215851.. The mean 14-day EBA of PA-824-moxifloxacin-pyrazinamide (n=13; 0·233 [SD 0·128]) was significantly higher than that of bedaquiline (14; 0·061 [0·068]), bedaquiline-pyrazinamide (15; 0·131 [0·102]), bedaquiline-PA-824 (14; 0·114 [0·050]), but not PA-824-pyrazinamide (14; 0·154 [0·040]), and comparable with that of standard treatment (ten; 0·140 [0·094]). Treatments were well tolerated and appeared safe. One patient on PA-824-moxifloxacin-pyrazinamide was withdrawn because of corrected QT interval changes exceeding criteria prespecified in the protocol.. PA-824-moxifloxacin-pyrazinamide is potentially suitable for treating drug-sensitive and multidrug-resistant tuberculosis. Multiagent EBA studies can contribute to reducing the time needed to develop new antituberculosis regimens.. The Global Alliance for TB Drug Development (TB Alliance). Topics: Adult; Antitubercular Agents; Aza Compounds; Colony Count, Microbial; Diarylquinolines; Double-Blind Method; Drug Therapy, Combination; Female; Fluoroquinolones; Humans; Male; Microbial Viability; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Prospective Studies; Pyrazinamide; Quinolines; Sputum; Tuberculosis, Pulmonary; Young Adult | 2012 |
Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients.
PA-824 is a novel nitroimidazo-oxazine being evaluated for its potential to improve tuberculosis (TB) therapy. This randomized study evaluated safety, tolerability, pharmacokinetics, and extended early bactericidal activity of PA-824 in drug-sensitive, sputum smear-positive, adult pulmonary tuberculosis patients. Fifteen patients per cohort received 1 of 4 doses of oral PA-824: 200, 600, 1,000, or 1,200 mg per day for 14 days. Eight subjects received once daily standard antituberculosis treatment as positive control. The primary efficacy endpoint was the mean rate of change in log CFU of Mycobacterium tuberculosis in sputum incubated on agar plates from serial overnight sputum collections, expressed as log10 CFU/day/ml (+/-standard deviation [SD]). The drug demonstrated increases that were dose linear but less than dose proportional in serum concentrations in doses from 200 to 1,000 mg daily. Dosing of 1,200 mg gave no additional exposure compared to 1,000 mg daily. The mean daily CFU fall under standard treatment was 0.148 (+/-0.055), consistent with that found in previous studies. The mean daily fall under PA-824 was 0.098 (+/-0.072) and was equivalent for all four dosages. PA-824 appeared safe and well tolerated; the incidence of adverse events potentially related to PA-824 appeared dose related. We conclude that PA-824 demonstrated bactericidal activity over the dose range of 200 to 1,200 mg daily over 14 days. Because maximum efficacy was unexpectedly achieved at the lowest dosage tested, the activity of lower dosages should now be explored. Topics: Adult; Antitubercular Agents; Colony Count, Microbial; Culture Media; Dose-Response Relationship, Drug; Double-Blind Method; Drug Administration Schedule; Female; Humans; Male; Mycobacterium tuberculosis; Nitroimidazoles; Sputum; Treatment Outcome; Tuberculosis, Pulmonary; Young Adult | 2010 |
22 other study(ies) available for pa-824 and Tuberculosis--Pulmonary
Article | Year |
---|---|
Pharmacodynamics and Bactericidal Activity of Combination Regimens in Pulmonary Tuberculosis: Application to Bedaquiline-Pretomanid-Pyrazinamide.
A critical barrier to codevelopment of tuberculosis (TB) regimens is a limited ability to identify optimal drug and dose combinations in early-phase clinical testing. While pharmacokinetic-pharmacodynamic (PKPD) target attainment is the primary tool for exposure-response optimization of TB drugs, the PD target is a static index that does not distinguish individual drug contributions to the efficacy of a multidrug combination. A PKPD model of bedaquiline-pretomanid-pyrazinamide (BPaZ) for the treatment of pulmonary TB was developed as part of a dynamic exposure-response approach to regimen development. The model describes a time course relationship between the drug concentrations in plasma and their individual as well as their combined effect on sputum bacillary load assessed by solid culture CFU counts and liquid culture time to positivity (TTP). The model parameters were estimated using data from the phase 2A studies NC-001-(J-M-Pa-Z) and NC-003-(C-J-Pa-Z). The results included a characterization of BPaZ activity as the most and least sensitive to changes in pyrazinamide and bedaquiline exposures, respectively, with antagonistic activity of BPa compensated by synergistic activity of BZ and PaZ. Simulations of the NC-003 study population with once-daily bedaquiline at 200 mg, pretomanid at 200 mg, and pyrazinamide at 1,500 mg showed BPaZ would require 3 months to attain liquid culture negativity in 90% of participants. These results for BPaZ were intended to be an example application with the general approach aimed at entirely novel drug combinations from a growing pipeline of new and repurposed TB drugs. Topics: Antitubercular Agents; Diarylquinolines; Humans; Nitroimidazoles; Pyrazinamide; Tuberculosis; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2022 |
A validated liquid chromatography tandem mass spectrometry assay for the analysis of pretomanid in plasma samples from pulmonary tuberculosis patients.
A method for the extraction and quantification of pretomanid in 40 μL of human plasma, by high performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) detection was developed and validated. Samples were prepared using liquid-liquid extraction and chromatographic separation was achieved on an Agilent Poroshell C18 column using an isocratic elution at a flow rate of 400 μL/min. Electrospray ionization with mass detection at unit resolution in the multiple reaction monitoring (MRM) mode on an AB Sciex API 3200 mass spectrometer was used. Over the validation period, accuracy, precision, selectivity, sensitivity, recovery and stability were assessed. The calibration range was 10 - 10 000 ng/mL. Inter- and intra-day precision, expressed as the coefficient of variation (%CV), was shown to be lower than 9% at all concentrations tested with accuracies between 95.2 and 110 %. The recovery was 72.4 % overall and reproducible at the low, medium and high end of the calibration range. The method was shown to be specific for pretomanid with no significant matrix effects observed. The validated method facilitated the analysis of pretomanid in plasma collected from adults with pulmonary TB as part of a clinical pharmacokinetic study. Topics: Adult; Chromatography, High Pressure Liquid; Chromatography, Liquid; Humans; Nitroimidazoles; Reproducibility of Results; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry; Tuberculosis, Pulmonary | 2021 |
Tuberculosis treatment: one-shot approach or cascade of regimens?
Topics: Diarylquinolines; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Tuberculosis; Tuberculosis, Pulmonary | 2020 |
Pretomanid for the treatment of pulmonary tuberculosis.
Discovering novel drugs active against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is currently one of the most unmet medical needs. In this context, pretomanid (PA-824), a novel nitroimidazole prodrug that targets both replicating and nonreplicating cells, is being developed by TB Alliance under license from Novartis. In replicating Mtb, pretomanid inhibits mycolic acid biosynthesis, which is an important building block of Mtb cell wall. Under nonreplicating conditions, pretomanid is reduced by deazaflavin-dependent nitroreductase, leading to generation of reactive nitrogen species exhibiting potent antimycobacterial activity. The U.S. Food and Drug Administration (FDA) has approved pretomanid under the Limited Population Pathway for Antibacterial and Antifungal Drugs (LPAD pathway) for treatment of adult patients with treatment-intolerant or nonresponsive multidrug-resistant TB and extensively drug-resistant TB in combination with bedaquiline and linezolid as part of the oral. Topics: Adult; Antitubercular Agents; Humans; Nitroimidazoles; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2020 |
Population Pharmacokinetics of the Antituberculosis Agent Pretomanid.
A population pharmacokinetic (PopPK) model for pretomanid was developed using data from 14 studies in the pretomanid development program: six phase 1 studies, six phase 2 studies, and two phase 3 studies. The final analysis data set contained 17,725 observations from 1,054 subjects, including healthy subjects and subjects with drug-sensitive, multidrug-resistant, or extensively drug-resistant pulmonary tuberculosis dosed pretomanid in monotherapy or combination therapy for up to 6 months. Pretomanid pharmacokinetic behavior was described by a one-compartment model that at a given dose was linear in its absorption and clearance processes but where the rate of absorption and extent of bioavailability changed with dose. Clearance and volume of distribution scaled allometrically with weight. Apparent clearance in females was 18% less than in males. Among HIV-positive subjects, absent the effect of CYP3A4-inducing antiretrovirals, apparent clearance was 6% higher. Some effects of total bilirubin and albumin were found, but the impacts on exposure were small. Bioavailability in the fasted condition was about half that in the fed condition. Relative bioavailability decreased with increasing dose in the fasted condition, but not for doses of ≤200 mg in the fed condition. HIV-positive subjects taking efavirenz and lopinavir/ritonavir had exposures that were reduced by 46 and 17%, respectively. There was little evidence for noteworthy effects of regimen partners on pretomanid. Standard diagnostics indicated that the model described the voluminous, diverse data well, so that the model could be used to generate exposure metrics for exposure/response analyses to be reported elsewhere. Topics: Antitubercular Agents; Biological Availability; Clinical Trials as Topic; Extensively Drug-Resistant Tuberculosis; Female; HIV Infections; Humans; Lopinavir; Male; Nitroimidazoles; Rifampin; Ritonavir; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2019 |
Are pretomanid-containing regimens for tuberculosis a victory or a victory narrative?
Topics: Diarylquinolines; Humans; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Tuberculosis; Tuberculosis, Pulmonary | 2019 |
Modeling and Simulation of Pretomanid Pharmacokinetics in Pulmonary Tuberculosis Patients.
Pretomanid is a nitroimidazole antibiotic in late-phase clinical testing as a component of several novel antituberculosis (anti-TB) regimens. A population pharmacokinetic model for pretomanid was constructed using a Bayesian analysis of data from two phase 2 studies, PA-824-CL-007 and PA-824-CL-010, conducted with adult (median age, 27 years) patients in Cape Town, South Africa, with newly diagnosed pulmonary TB. Combined, these studies included 63 males and 59 females administered once-daily oral pretomanid doses of 50, 100, 150, 200, 600, 1,000, or 1,200 mg for 14 days. The observed pretomanid plasma concentration-time profiles for all tested doses were described by a one-compartment model with first-order absorption and elimination and a sigmoidal bioavailability dependent on dose, time, and the predose fed state. Allometric scaling with body weight (normalized to 70 kg) was used for volume of distribution and clearance, with the scaling exponents equal to 1 and 3/4, respectively. The posterior population geometric means for the clearance and volume of distribution allometric constants were 4.8 ± 0.2 liters/h and 130 ± 5 liters, respectively, and the posterior population geometric mean for the half-maximum-effect dose for the reduction of bioavailability was 450 ± 50 mg. Interindividual variability, described by the percent coefficient of variation, was 32% ± 3% for clearance, 17% ± 4% for the volume of distribution, and 74% ± 9% for the half-maximum-effect dose. This model provides a dose-exposure relationship for pretomanid in adult TB patients with potential applications to dose selection in individuals and to further clinical testing of novel pretomanid-containing anti-TB regimens. Topics: Adolescent; Adult; Antitubercular Agents; Female; Humans; Male; Middle Aged; Models, Theoretical; Monte Carlo Method; Nitroimidazoles; Tuberculosis, Pulmonary; Young Adult | 2018 |
Bactericidal and Sterilizing Activity of a Novel Regimen with Bedaquiline, Pretomanid, Moxifloxacin, and Pyrazinamide in a Murine Model of Tuberculosis.
New regimens based on 2 or more novel agents are sought to shorten or to simplify treatment of tuberculosis (TB), including drug-resistant forms. Prior studies showed that the novel combinations of bedaquiline (BDQ) plus pretomanid (PMD) plus pyrazinamide (PZA) and PMD plus moxifloxacin (MXF) plus PZA shortened the treatment duration necessary to prevent relapse by 2 to 3 months and 1 to 2 months, respectively, compared with the current first-line regimen, in a murine TB model. These 3-drug combinations are now being studied in clinical trials. Here, the 4-drug combination of BDQ+PMD+MXF+PZA was compared to its 3-drug component regimens and different treatment durations of PZA and MXF were explored, to identify the optimal regimens and treatment times and to estimate the likelihood of success against drug-resistant strains. BDQ+PMD+MXF+PZA rendered all mice relapse-free after 2 months of treatment. PZA administration could be discontinued after the first month of treatment without worsening outcomes, whereas the absence of MXF, PZA, or BDQ administration from the beginning necessitated approximately 0.5, 1, or 2 months, respectively, of additional treatment to attain the same outcome. Topics: Animals; Antitubercular Agents; Diarylquinolines; Disease Models, Animal; Female; Fluoroquinolones; Mice; Mice, Inbred BALB C; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Tuberculosis, Pulmonary | 2017 |
Cordyceps sinensis promotes immune regulation and enhances bacteriostatic activity of PA-824 via IL-10 in Mycobacterium tuberculosis disease.
PA-824 is a novel bicyclic nitroimidazole anti-tuberculosis (TB) drug. Cordyceps sinensis (Berk.) Sacc. (CS) was proven to be a good immunomodulatory compound. This research aimed to investigate the effect of CS on PA-824 in Mycobacterium tuberculosis (M.tb) infected mice (female CBA/J mice, 6 to 8 weeks of age and 20±2 g of weight). Mice were randomly assigned to 4 groups: PA-824, CS, PA-824+CS, and control. To verify the effect of PA-824 and CS on M.tb, after drug administration, mice lungs were harvested and bacterial colony formations were measured. Cells were isolated from infected lungs and spleens to analyze the percentage of CD4+ T cells (CD11a positive). Lung cells were cultured to detect the secretion of interferon-γ (IFN-γ) and interleukin-10 (IL-10) by ELISA. IFN-γ and IL-10 double-positive CD4+ cells in peripheral blood were measured by flow cytometry. The expression levels of IL-2 and IL-10 in mice lungs were analyzed by real-time PCR and western blot. Results showed that PA-824 combined with CS led to the lowest lung colony-forming units (CFU) counts among treated groups. Furthermore, this beneficial outcome might be associated with the decreased CD11a on CD4+ cells in mice lungs and spleens. Moreover, the suppressed secretion of IFN-γ and IL-10, and IL-10 expressions, as well as the decreased IFN-γ and IL-10 double-positive CD4+ cells in blood, could also be associated with the positive effect. However, no significant effect on IL-2 production was found. The combination of PA-824 and CS had more effective bacteriostatic and immunomodulatory effects on M.tb infected mice than PA-824 alone. In conclusion, CS has the potential to be an effective adjuvant in TB treatment. Topics: Animals; Anti-Bacterial Agents; Blotting, Western; Cordyceps; Disease Models, Animal; Flow Cytometry; Immunomodulation; Interleukin-10; Male; Mice; Mice, Inbred CBA; Mycobacterium tuberculosis; Nitroimidazoles; Real-Time Polymerase Chain Reaction; Tuberculosis, Pulmonary | 2017 |
Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a Mouse Model of Tuberculosis.
New regimens based on two or more novel agents are sought to shorten or simplify treatment of tuberculosis (TB). Pretomanid (PMD) is a nitroimidazole in phase 3 trials that has significant bactericidal activity alone and in combination with bedaquiline (BDQ) and/or pyrazinamide (PZA). We previously showed that the novel combination of BDQ+PMD plus the oxazolidinone sutezolid (SZD) had sterilizing activity superior to that of the first-line regimen in a murine model of TB. The present experiments compared the activity of different oxazolidinones in combination with BDQ+PMD with or without PZA in the same model. The 3-drug regimen of BDQ+PMD plus linezolid (LZD) had sterilizing activity approaching that of BDQ+PMD+SZD and superior to that of the first-line regimen. The addition of PZA further enhanced activity. Reducing the duration of LZD to 1 month did not significantly affect the activity of the regimen. Halving the LZD dose or replacing LZD with RWJ-416457 modestly reduced activity over the first month but not after 2 months. AZD5847 and tedizolid also increased the bactericidal activity of BDQ+PMD, but they were less effective than the other oxazolidinones. These results provide optimism for safe, short-course oral regimens for drug-resistant TB that may also be superior to the current first-line regimen for drug-susceptible TB. Topics: Animals; Antitubercular Agents; Bacterial Load; Diarylquinolines; Disease Models, Animal; Drug Administration Schedule; Drug Combinations; Drug Resistance, Multiple, Bacterial; Drug Synergism; Female; Linezolid; Lung; Mice; Mice, Inbred BALB C; Mycobacterium tuberculosis; Nitroimidazoles; Organophosphates; Oxazoles; Oxazolidinones; Pyrazinamide; Time Factors; Treatment Outcome; Tuberculosis, Pulmonary | 2016 |
New effective antituberculosis regimens.
Topics: Antitubercular Agents; Female; Fluoroquinolones; Humans; Male; Moxifloxacin; Nitroimidazoles; Pyrazinamide; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2015 |
Potent rifamycin-sparing regimen cures guinea pig tuberculosis as rapidly as the standard regimen.
Strategies involving new drug combinations, as well as new uses of existing drugs, are urgently needed to reduce the time required to cure patients with drug-sensitive or multidrug-resistant (MDR) tuberculosis (TB). We compared the sterilizing activity of the standard first-line antitubercular regimen, rifampin-isoniazid-pyrazinamide (RHZ), with that of the novel regimen PA-824-moxifloxacin-pyrazinamide (PaMZ), which is currently being studied in clinical trials (NCT01498419), in the guinea pig model of chronic TB infection, in which animals develop necrotic granulomas histologically resembling their human counterparts. Guinea pigs were aerosol infected with ~2 log10 bacilli of wild-type Mycobacterium tuberculosis H37Rv, and antibiotic treatment was initiated 6 weeks after infection. Separate groups of animals received RHZ, PaMZ, or single or two-drug components of the latter regimen administered at human-equivalent doses 5 days/week for a total of 8 weeks. Relapse rates were assessed 3 months after discontinuation of treatment to determine the sterilizing activity of each combination regimen. PaMZ given at human-equivalent doses was safe and well tolerated for the entire treatment period and rendered guinea pig lungs culture negative more rapidly than RHZ did. After 1 month of treatment, 80% and 50% of animals in the RHZ and PaMZ groups, respectively, had lung culture-positive relapse. Both combination regimens prevented microbiological relapse when administered for a total of 2 months. Our data support the use of PaMZ as a novel isoniazid- and rifamycin-sparing regimen suitable for treatment of both drug-sensitive TB and MDR-TB. Topics: Animals; Antitubercular Agents; Area Under Curve; Disease Models, Animal; Drug Evaluation, Preclinical; Drug Therapy, Combination; Female; Guinea Pigs; Lung; Mycobacterium tuberculosis; Nitroimidazoles; Organ Size; Pyrazinamide; Recurrence; Rifamycins; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2013 |
Structure-activity relationships for amide-, carbamate-, and urea-linked analogues of the tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824).
Analogues of clinical tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824), in which the OCH(2) linkage was replaced with amide, carbamate, and urea functionality, were investigated as an alternative approach to address oxidative metabolism, reduce lipophilicity, and improve aqueous solubility. Several soluble monoaryl examples displayed moderately improved (∼2- to 4-fold) potencies against replicating Mycobacterium tuberculosis but were generally inferior inhibitors under anaerobic (nonreplicating) conditions. More lipophilic biaryl derivatives mostly displayed similar or reduced potencies to these in contrast to the parent biaryl series. The leading biaryl carbamate demonstrated exceptional metabolic stability and a 5-fold better efficacy than the parent drug in a mouse model of acute M. tuberculosis infection but was poorly soluble. Bioisosteric replacement of this biaryl moiety by arylpiperazine resulted in a soluble, orally bioavailable carbamate analogue providing identical activity in the acute model, comparable efficacy to OPC-67683 in a chronic infection model, favorable pharmacokinetic profiles across several species, and enhanced safety. Topics: Acute Disease; Amides; Animals; Antitubercular Agents; Biological Availability; Biphenyl Compounds; Bridged Bicyclo Compounds, Heterocyclic; Carbamates; Chronic Disease; Dogs; Humans; Mice; Microbial Sensitivity Tests; Microsomes, Liver; Models, Molecular; Mycobacterium tuberculosis; Nitroimidazoles; Piperazines; Rats; Solubility; Stereoisomerism; Structure-Activity Relationship; Tuberculosis, Pulmonary; Urea | 2012 |
Synthesis and structure-activity relationships of varied ether linker analogues of the antitubercular drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5h-imidazo[2,1-b][1,3]oxazine (PA-824).
New analogues of antitubercular drug PA-824 were synthesized, featuring alternative side chain ether linkers of varying size and flexibility, seeking drug candidates with enhanced metabolic stability and high efficacy. Both α-methyl substitution and removal of the benzylic methylene were broadly tolerated in vitro, with a biaryl example of the latter class exhibiting an 8-fold better efficacy than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection and negligible fragmentation to an alcohol metabolite in liver microsomes. Extended linkers (notably propenyloxy, propynyloxy, and pentynyloxy) provided greater potencies against replicating M. tb (monoaryl analogues), with propynyl ethers being most effective under anaerobic (nonreplicating) conditions (mono/biaryl analogues). For benzyloxybenzyl and biaryl derivatives, aerobic activity was maximal with the original (OCH(2)) linker. One propynyloxy-linked compound displayed an 89-fold higher efficacy than the parent drug in the acute model, and it was slightly superior to antitubercular drug OPC-67683 in a chronic infection model. Topics: Acute Disease; Animals; Antitubercular Agents; Chronic Disease; Ethers; Humans; In Vitro Techniques; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Microsomes, Liver; Mycobacterium tuberculosis; Nitroimidazoles; Stereoisomerism; Structure-Activity Relationship; Tuberculosis, Pulmonary | 2011 |
Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis.
To truly transform the landscape of tuberculosis treatment, novel regimens containing at least 2 new drugs are needed to simplify the treatment of both drug-susceptible and drug-resistant forms of tuberculosis. As part of an ongoing effort to evaluate novel drug combinations for treatment-shortening potential in a murine model, we performed two long-term, relapse-based experiments. In the first experiment, TMC207 plus pyrazinamide, alone or in combination with any third drug, proved superior to the first-line regimen including rifampin, pyrazinamide, and isoniazid. On the basis of CFU counts at 1 month, clofazimine proved to be the best third drug combined with TMC207 and pyrazinamide, whereas the addition of PA-824 was modestly antagonistic. Relapse results were inconclusive due to the low rate of relapse in all test groups. In the second experiment evaluating 3-drug combinations composed of TMC207, pyrazinamide, PA-824, moxifloxacin, and rifapentine, TMC207 plus pyrazinamide plus either rifapentine or moxifloxacin was the most effective, curing 100% and 67% of the mice treated, respectively, in 2 months of treatment. Four months of the first-line regimen did not cure any mice, whereas the combination of TMC207, PA-824, and moxifloxacin cured 50% of the mice treated. The results reveal new building blocks for novel regimens with the potential to shorten the duration of treatment for both drug-susceptible and drug-resistant tuberculosis, including the combination of TMC207, pyrazinamide, PA-824, and a potent fluoroquinolone. Topics: Animals; Antibiotics, Antitubercular; Antitubercular Agents; Colony Count, Microbial; Diarylquinolines; Disease Models, Animal; Drug Administration Schedule; Drug Therapy, Combination; Mice; Mice, Inbred BALB C; Mycobacterium tuberculosis; Nitroimidazoles; Quinolines; Secondary Prevention; Treatment Outcome; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2011 |
Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs.
Novel treatments for multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB), or latent TB are needed urgently. Recently, we reported the formulation and characterization of the nitroimidazo-oxazine PA-824 for efficient aerosol delivery as dry powder porous particles and the subsequent disposition in guinea pigs after pulmonary administration. The objective of the present study was to evaluate the effects of these PA-824 therapeutic aerosols on the extent of TB infection in the low-inoculum aerosol infection guinea pig model. Four weeks after infection by the pulmonary route, animals received daily treatment for 4 weeks of either a high or a low dose of PA-824 dry powder aerosol. Animals received PA-824 cyclodextrin/lecithin suspensions orally as positive controls, and those receiving placebo particles or no treatment were negative controls. The lungs and spleens of animals receiving the high dose of inhaled PA-824 particles exhibited a lower degree of inflammation (indicated by wet tissue weights), bacterial burden, and tissue damage (indicated by histopathology) than those of untreated or placebo animals. Treatment with oral PA-824 cyclodextrin/lecithin suspension resulted in a more significant reduction in the bacterial burden of lungs and spleen, consistent with a dose that was larger than inhaled doses (eight times the inhaled low dose and four times the inhaled high dose). However, histopathological analysis revealed that the extent of tissue damage was comparable in groups receiving the oral or either inhaled dose. The present studies indicate the potential use of PA-824 dry powder aerosols in the treatment of TB. Topics: Administration, Inhalation; Administration, Oral; Aerosols; Animals; Antitubercular Agents; Chemistry, Pharmaceutical; Colony Count, Microbial; Disease Models, Animal; Extensively Drug-Resistant Tuberculosis; Guinea Pigs; Humans; Latent Tuberculosis; Lung; Male; Nitroimidazoles; Particle Size; Powders; Spleen; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2010 |
Efficacy of quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives in experimental tuberculosis.
This study extends earlier reports regarding the in vitro efficacies of the 1,4-di-N-oxide quinoxaline derivatives against Mycobacterium tuberculosis and has led to the discovery of a derivative with in vivo efficacy in the mouse model of tuberculosis. Quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives were tested in vitro against a broad panel of single-drug-resistant M. tuberculosis strains. The susceptibilities of these strains to some compounds were comparable to those of strain H(37)Rv, as indicated by the ratios of MICs for resistant and nonresistant strains, supporting the premise that 1,4-di-N-oxide quinoxaline derivatives have a novel mode of action unrelated to those of the currently used antitubercular drugs. Specific derivatives were further evaluated in a series of in vivo assays, including evaluations of the maximum tolerated doses, the levels of oral bioavailability, and the efficacies in a low-dose aerosol model of tuberculosis in mice. One compound, ethyl 7-chloro-3-methylquinoxaline-2-carboxylate 1,4-dioxide, was found to be (i) active in reducing CFU counts in both the lungs and spleens of infected mice following oral administration, (ii) active against PA-824-resistant Mycobacterium bovis, indicating that the pathway of bioreduction/activation is different from that of PA-824 (a bioreduced nitroimidazole that is in clinical trials), and (iii) very active against nonreplicating bacteria adapted to low-oxygen conditions. These data indicate that 1,4-di-N-oxide quinoxalines hold promise for the treatment of tuberculosis. Topics: Animals; Antitubercular Agents; Cyclic N-Oxides; Disease Models, Animal; Drug Resistance, Bacterial; Female; Humans; Lung; Mice; Mice, Inbred C57BL; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Quinoxalines; Specific Pathogen-Free Organisms; Spleen; Structure-Activity Relationship; Treatment Outcome; Tuberculosis, Pulmonary | 2008 |
Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis.
PA-824 is in phase II clinical testing to treat tuberculosis. At a dose of 100 mg/kg of body weight, it has demonstrated bactericidal activity during the initial and continuation phases of treatment in a murine model of tuberculosis. In a prior study, substitution of PA-824 for isoniazid in the first-line regimen of rifampin, isoniazid, and pyrazinamide resulted in significantly lower CFU counts at 2 months and shorter time to culture-negative conversion. However, the study design prevented a rigorous assessment of the relapse rate after completion of therapy. The current experiment was designed to assess (i) the extent of the beneficial effect of substituting PA-824 for isoniazid in the first-line regimen, (ii) the influence of the PA-824 dose on the same effect, and (iii) the activity of each one-, two-, and three-drug combination of rifampin, PA-824, and pyrazinamide. Mice were infected by the aerosol route and initiated on treatment 14 days later with more than 7 log(10) CFU per lung. Treatment with rifampin and pyrazinamide was more effective than treatment with rifampin, isoniazid, and pyrazinamide at reducing the lung CFU count, consistent with past evidence of isoniazid's antagonism in this model. The addition of PA-824 at 12.5 and 25 mg/kg/day did not increase the activity of rifampin plus pyrazinamide, but the addition of PA-824 at 50 and 100 mg/kg/day did increase the activity in a dose-dependent manner. The combination of rifampin, PA-824 (100 mg/kg), and pyrazinamide rendered all mice culture negative after 2 months of treatment and free of relapse after 4 months of treatment, while some mice receiving rifampin, isoniazid, and pyrazinamide remained culture positive and 15% relapsed after completing 4 months of treatment. The two-drug combination of PA-824 and pyrazinamide displayed synergistic activity that was equivalent to that of the standard first-line regimen. Together, these results support the evaluation of regimens based on the combination of rifampin, PA-824, and pyrazinamide in phase II clinical trials while demonstrating several potential pitfalls in the evaluation of new drug combinations in a murine model of tuberculosis. Topics: Animals; Antibiotics, Antitubercular; Antitubercular Agents; Colony Count, Microbial; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Female; Isoniazid; Lung; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Nitroimidazoles; Pyrazinamide; Recurrence; Rifampin; Tuberculosis, Pulmonary | 2008 |
Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis.
PA-824 is a nitroimidazo-oxazine in clinical testing for the treatment of tuberculosis. We report that the novel combination of PA-824, moxifloxacin, and pyrazinamide cured mice more rapidly than the first-line regimen of rifampin, isoniazid, and pyrazinamide. If applicable to humans, regimens containing this combination may radically shorten the treatment of multidrug-resistant tuberculosis. Topics: Animals; Antitubercular Agents; Aza Compounds; Colony Count, Microbial; Disease Models, Animal; Drug Therapy, Combination; Female; Fluoroquinolones; Humans; Lung; Mice; Mice, Inbred BALB C; Moxifloxacin; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Quinolines; Treatment Outcome; Tuberculosis, Pulmonary | 2008 |
Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis.
The creation of new chemotherapeutic regimens that permit shortening the duration of treatment is a major priority for antituberculosis drug development. In this study, we used the murine model of experimental tuberculosis therapy to determine whether incorporation of the investigational new nitroimidazopyran PA-824 into the standard first-line regimen has the potential to shorten the 6-month duration of treatment. As demonstrated previously, PA-824 alone had significant bactericidal activity over the first 2 months of treatment. Moreover, the substitution of PA-824 for isoniazid led to significantly lower lung CFU counts after 2 months of treatment and to more rapid culture-negative conversion compared to the standard regimen of rifampin, isoniazid, and pyrazinamide. Despite this, there was no difference in the proportion of mice relapsing after completing 6 months of therapy (2 of 19 mice treated with PA-824 in place of isoniazid relapsed versus 0 of 46 mice treated with the standard regimen). Meanwhile, no other PA-824-containing regimen tested was superior to the standard regimen on any assessment. Thus, we were unable to establish a clear role for PA-824 in a treatment-shortening regimen that includes two or more of the current first-line drugs. Future preclinical studies should include the evaluation of novel combinations of PA-824 with new drug candidates in addition to existing antituberculosis drugs for their potential to substantially improve the treatment of both drug-susceptible and multidrug-resistant tuberculosis. Topics: Animals; Antibiotics, Antitubercular; Antitubercular Agents; Disease Models, Animal; Drug Therapy, Combination; Ethambutol; Female; Isoniazid; Mice; Mice, Inbred BALB C; Mycobacterium tuberculosis; Nitroimidazoles; Pyrazinamide; Rifampin; Secondary Prevention; Time Factors; Tuberculosis, Pulmonary | 2006 |
Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis.
The nitroimidazopyran PA-824 has potent in vitro activity against Mycobacterium tuberculosis, a narrow spectrum of activity limited primarily to the M. tuberculosis complex, and no demonstrable cross-resistance to a variety of antituberculosis drugs. In a series of experiments, we sequentially characterized the activity of PA-824 in an experimental murine model of tuberculosis. The minimal effective dose was 12.5 mg/kg of body weight/day. The minimal bactericidal dose (MBD) was 100 mg/kg/day. When PA-824 was used as monotherapy at the MBD, it exhibited promising bactericidal activity during the initial intensive phase of therapy that was similar to that of the equipotent dose of isoniazid in humans. In combination with isoniazid, PA-824 prevented the selection of isoniazid-resistant mutants. Perhaps more importantly, PA-824 also demonstrated potent activity during the continuation phase of therapy, during which it targeted bacilli that had persisted through an initial 2-month intensive phase of treatment with rifampin, isoniazid, and pyrazinamide. Together, these data strongly support further evaluation of PA-824 in combination with first- or second-line antituberculosis drugs to determine its potential contribution to the treatment of drug-susceptible or multidrug-resistant tuberculosis, respectively. Topics: Animals; Antitubercular Agents; Colony Count, Microbial; Disease Models, Animal; Drug Evaluation, Preclinical; Drug Resistance, Bacterial; Female; Humans; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Nitroimidazoles; Random Allocation; Tuberculosis, Pulmonary | 2005 |
Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models.
This study extends earlier reports regarding the in vitro and in vivo efficacies of the nitroimidazopyran PA-824 against Mycobacterium tuberculosis. PA-824 was tested in vitro against a broad panel of multidrug-resistant clinical isolates and was found to be highly active against all isolates (MIC<1 microg/ml). The activity of PA-824 against M. tuberculosis was also assessed grown under conditions of oxygen depletion. PA-824 showed significant activity at 2, 10, and 50 microg/ml, similar to that of metronidazole, in a dose-dependent manner. In a short-course mouse infection model, the efficacy of PA-824 at 50, 100, and 300 mg/kg of body weight formulated in methylcellulose or cyclodextrin/lecithin after nine oral treatments was compared with those of isoniazid, rifampin, and moxifloxacin. PA-824 at 100 mg/kg in cyclodextrin/lecithin was as active as moxifloxacin at 100 mg/kg and isoniazid at 25 mg/kg and was slightly more active than rifampin at 20 mg/kg. Long-term treatment with PA-824 at 100 mg/kg in cyclodextrin/lecithin reduced the bacterial load below 500 CFU in the lungs and spleen. No significant differences in activity between PA-824 and the other single drug treatments tested (isoniazid at 25 mg/kg, rifampin at 10 mg/kg, gatifloxacin at 100 mg/kg, and moxifloxacin at 100 mg/kg) could be observed. In summary, its good activity in in vivo models, as well as its activity against multidrug-resistant M. tuberculosis and against M. tuberculosis isolates in a potentially latent state, makes PA-824 an attractive drug candidate for the therapy of tuberculosis. These data indicate that there is significant potential for effective oral delivery of PA-824 for the treatment of tuberculosis. Topics: Animals; Antitubercular Agents; Colony Count, Microbial; Disease Models, Animal; Drug Evaluation, Preclinical; Female; Humans; Lung; Mice; Mice, Inbred C57BL; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Nitroimidazoles; Specific Pathogen-Free Organisms; Spleen; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary | 2005 |