pa-824 has been researched along with Leishmaniasis--Visceral* in 3 studies
3 other study(ies) available for pa-824 and Leishmaniasis--Visceral
Article | Year |
---|---|
Development of (6 R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 H-imidazo[2,1- b][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis.
Discovery of the potent antileishmanial effects of antitubercular 6-nitro-2,3-dihydroimidazo[2,1- b][1,3]oxazoles and 7-substituted 2-nitro-5,6-dihydroimidazo[2,1- b][1,3]oxazines stimulated the examination of further scaffolds (e.g., 2-nitro-5,6,7,8-tetrahydroimidazo[2,1- b][1,3]oxazepines), but the results for these seemed less attractive. Following the screening of a 900-compound pretomanid analogue library, several hits with more suitable potency, solubility, and microsomal stability were identified, and the superior efficacy of newly synthesized 6 R enantiomers with phenylpyridine-based side chains was established through head-to-head assessments in a Leishmania donovani mouse model. Two such leads ( R-84 and R-89) displayed promising activity in the more stringent Leishmania infantum hamster model but were unexpectedly found to be potent inhibitors of hERG. An extensive structure-activity relationship investigation pinpointed two compounds ( R-6 and pyridine R-136) with better solubility and pharmacokinetic properties that also provided excellent oral efficacy in the same hamster model (>97% parasite clearance at 25 mg/kg, twice daily) and exhibited minimal hERG inhibition. Additional profiling earmarked R-6 as the favored backup development candidate. Topics: Animals; Antiparasitic Agents; Cell Membrane Permeability; Chagas Disease; Cricetinae; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP3A Inhibitors; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; ERG1 Potassium Channel; Leishmania donovani; Leishmania infantum; Leishmaniasis, Visceral; Mesocricetus; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Mycobacterium tuberculosis; Oxazines; Rats; Rats, Sprague-Dawley; Structure-Activity Relationship | 2018 |
7-Substituted 2-Nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis.
Within a backup program for the clinical investigational agent pretomanid (PA-824), scaffold hopping from delamanid inspired the discovery of a novel class of potent antitubercular agents that unexpectedly possessed notable utility against the kinetoplastid disease visceral leishmaniasis (VL). Following the identification of delamanid analogue DNDI-VL-2098 as a VL preclinical candidate, this structurally related 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazine class was further explored, seeking efficacious backup compounds with improved solubility and safety. Commencing with a biphenyl lead, bioisosteres formed by replacing one phenyl by pyridine or pyrimidine showed improved solubility and potency, whereas more hydrophilic side chains reduced VL activity. In a Leishmania donovani mouse model, two racemic phenylpyridines (71 and 93) were superior, with the former providing >99% inhibition at 12.5 mg/kg (b.i.d., orally) in the Leishmania infantum hamster model. Overall, the 7R enantiomer of 71 (79) displayed more optimal efficacy, pharmacokinetics, and safety, leading to its selection as the preferred development candidate. Topics: Animals; Antiprotozoal Agents; Antitubercular Agents; Cricetinae; Drug Discovery; Female; Humans; Leishmania donovani; Leishmania infantum; Leishmaniasis, Visceral; Male; Mesocricetus; Mice; Mice, Inbred BALB C; Nitroimidazoles; Oxazines; Rats, Sprague-Dawley | 2017 |
Repositioning Antitubercular 6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles for Neglected Tropical Diseases: Structure-Activity Studies on a Preclinical Candidate for Visceral Leishmaniasis.
6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazole derivatives were initially studied for tuberculosis within a backup program for the clinical trial agent pretomanid (PA-824). Phenotypic screening of representative examples against kinetoplastid diseases unexpectedly led to the identification of DNDI-VL-2098 as a potential first-in-class drug candidate for visceral leishmaniasis (VL). Additional work was then conducted to delineate its essential structural features, aiming to improve solubility and safety without compromising activity against VL. While the 4-nitroimidazole portion was specifically required, several modifications to the aryloxy side chain were well-tolerated e.g., exchange of the linking oxygen for nitrogen (or piperazine), biaryl extension, and replacement of phenyl rings by pyridine. Several less lipophilic analogues displayed improved aqueous solubility, particularly at low pH, although stability toward liver microsomes was highly variable. Upon evaluation in a mouse model of acute Leishmania donovani infection, one phenylpyridine derivative (37) stood out, providing efficacy surpassing that of the original preclinical lead. Topics: Animals; Antiprotozoal Agents; Antitubercular Agents; Cricetinae; Drug Repositioning; Female; High-Throughput Screening Assays; Hydrogen-Ion Concentration; Leishmania infantum; Leishmaniasis, Visceral; Mesocricetus; Mice; Mice, Inbred BALB C; Microsomes, Liver; Models, Molecular; Solubility; Structure-Activity Relationship | 2016 |