p-hydroxycinnamaldehyde and Neoplasms

p-hydroxycinnamaldehyde has been researched along with Neoplasms* in 2 studies

Reviews

1 review(s) available for p-hydroxycinnamaldehyde and Neoplasms

ArticleYear
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
    Nature cell biology, 2015, Volume: 17, Issue:11

    The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.

    Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Humans; Lipogenesis; Neoplasms; Oxidative Stress; Pentose Phosphate Pathway; Phosphogluconate Dehydrogenase; Protein Serine-Threonine Kinases; Ribulosephosphates; Signal Transduction

2015

Other Studies

1 other study(ies) available for p-hydroxycinnamaldehyde and Neoplasms

ArticleYear
Apoptosis induction of 2'-hydroxycinnamaldehyde as a proteasome inhibitor is associated with ER stress and mitochondrial perturbation in cancer cells.
    Biochemical pharmacology, 2007, Aug-15, Volume: 74, Issue:4

    2'-Hydroxycinnamaldehyde (HCA), isolated from the stem bark of Cinnamomum cassia, and 2'-benzoyloxycinnamaldehyde (BCA), one of HCA derivatives, have antiproliferative activities on several human cancer cell lines. Our previous study suggested that reactive oxygen species (ROS) and caspase-3 are the major regulators of HCA-induced apoptosis. In the present study, we demonstrated a novel molecular target using in vitro pull-down assay by biotin-labeled HCA (biotin-HCA) in SW620 cells. We analyzed 11 differential spots of 2-dimensional gel prepared with pull-downed proteins by biotin-HCA. Among them, five spots were identified as proteasome subunits. An in vitro 26S proteasome function assay using specific fluorogenic substrates showed that HCA potently inhibits L3-like activity of the proteasome. In addition, HCA showed inhibitory action against chymotrypsin-like, trypsin-like, and PGPH-like activities. DNA microarray showed that HCA induced heat shock family and ER stress-responsive genes, which reflects the accumulation of misfolded proteins by proteasome inhibition. On western blot analysis, it was confirmed that HCA induces glucose-regulated protein, 78 kDa (GRP78) and some representative endoplasmic reticulum (ER) stress-responsive proteins. Furthermore, HCA treatment decreased mitochondrial membrane potential. The effect of HCA on cytochrome c and Bax translocation between cytosol and mitochondrial membrane was clarified using western blot analysis. These results suggest that HCA-induced apoptosis is associated with the inhibition of the proteasome activity that leads in turn to the increase of ER stress and mitochondrial perturbation.

    Topics: ADP-ribosyl Cyclase; Apoptosis; bcl-2-Associated X Protein; Blotting, Western; Cell Line, Tumor; Cinnamates; Cytochromes c; Cytosol; Electrophoresis, Gel, Two-Dimensional; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Gene Expression Profiling; Heme Oxygenase-1; Humans; Membrane Potential, Mitochondrial; Membrane Proteins; Mitochondrial Swelling; Molecular Structure; Neoplasms; Oligonucleotide Array Sequence Analysis; Phosphatidate Phosphatase; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Transport; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Transcription Factor CHOP

2007